

NOP RC&D

NORTH OLYMFIC PENINSULA RESOURCE CONSERVATION & DEVELOPMENT

Department of Commerce Innovation is in our nature.

Planning for Climate Change Across a Rural, Two-County Geography

Kate Dean, NOP RC&D

Co-Authors:

Cindy Jayne, NOP RC&D

Sascha Petersen and Jake Bell, Adaptation International

Ian Miller, Washington Sea Grant

AGENDA

- Project Overview
- Process and Engagement
- Vulnerabilities and Strategies
- Lessons Learned
- Next Steps

PROJECT OVERVIEW: Assumptions

♦ CLIMATE CHANGE IS HAPPENING

Not going to argue about WHY or science

♦ Focus on Adaptation, not Mitigation

Land use planning perspective

Planning is a responsibility of governments, neighborhoods, businesses, communities...

Earth is adaptable, people are innovative

NW Hikers: 2014

NW Hikers: 2015

PROJECT OVERVIEW

- Create <u>a Climate Change Preparation Plan</u> for the North Olympic Peninsula that will inform the <u>comprehensive and</u> <u>strategic planning</u> processes of the area.
 - **Funded by:** Washington Department of Commerce
 - <u>Recipient:</u> NOP Resource Conservation & Development Council
 - <u>Consultants:</u>
 - Adaptation International
 - Washington Seagrant
 - Timeframe: June 2014 October 2015

the second second second second

NOP RC&D

adaptation 🔒

Project Process and Timeline

<u>Step 1:</u>

Conduct high level climate assessment (August 2014)

adaptation

Sea Gra

NOP RC&D

<u>Step 2:</u>

Workshops Identify Vulnerabilities and Priorities

(November 2014)

<u>Step 3:</u>

Workshops to Develop Adaptation Strategies (April 2015)

I am all the

Final Deliverables:

Report, Presentation of Results, Sea Level Rise Maps, Planning Language Examples, Monitoring Plan (Oct 2015)

PROCESS: ORGANIZATIONAL STRUCTURE

NOP RC&D:

2 Counties, 3 Cities, 3 Tribes, 2 Ports, 2 PUDs, 2 EDCs, 2 Higher Ed, Federal Legislative Staff

STAFF:

1 Project Manager, 3 consultants/ climate scientists

CORE TEAM:

2 City and 1 County Council Members, 1 City Planner, 3 Tribal Reps, 4 Environmental Orgs, 1 Timber Industry Rep

PARTNER TEAM:

A State of the second s

175 Reps from environmental groups, city and county departments, state and federal agencies, fisheries, forestry...

adaptation

Sea Gra

NOP RC&D

PROCESS: Vulnerability Assessment Workshops:

ECOSYSTEMS, WATER SUPPLIES, CRITICAL INFRASTRUCTURE & COMMUNITY VITALITY

Vulnerability Ranking

Table 3. Na	tural a	nd Ma	inaged Ecosys	tems Vulnerability Ranki	ng Table	
					Sensitivity: Low → High	
		SO	S1	S2	\$3	S4
Adaptive Capacity:	AC0					*Wild Salmon *Nearshore environment-natural context
Low ↓ High	AC1		*Wetlands		*Waterfowl *Clallam Low elevation forests - natural *Chimacum Agriculture	*Wild/commercial shellfish stocks *Nearshore environment-urban context *Food chain base (fish, insects, plankton) *Amphibians *Sea and shorebirds
	AC2				*Marine mammals *Southeast Jefferson Co. Forests *High elevation forests *Shellfish hatchery *Raptors *Songbirds	*Nearshore environment-estuary context *Marine and Freshwater Fish
	AC3			*Dungeness Agriculture *Quilcene Agriculture *Salmon aquaculture *Large land mammals	*Salmon hatchery *Small land mammals	
	AC4				*Clallam low elevation forests- managed *High elev forests-managed	

Action-Planning Criteria

- Resources available
- Project capacity and data gaps
- Relevance to both counties
- Informing decision-making
- Timing and magnitude of impacts

PROCESS: Adaptation Workshops

Climate Preparedness Strategy Evaluation Criteria								
Timeframe for	Adaptive/	Cost of the	Avoided Cost:	Technical	Political & Social	Alignment with	Environmentally Sound: Action	
Implementation:	Flexible:	Action:	Perceived cost of	Feasibility:	Feasibility: Action	Other Community	increases resilience of natural	
The ideal	The proposed	Direct	inaction (financial	Current	has political and	Goals: The action	environment in the face of a	
timeframe for	strategy	financial cost	or economic)	technology	social community	has benefits for	range of climate change impacts;	
initiating	allows for	or economic	ranked on same	can be used	support or, at a	other community	action decreases the emission of	
implementation of	responding to	costs of the	scaling as "Cost of	and	minimum, does	goals, plans, or	GHGs (has Mitigation Co-	
the proposed	uncertain	project.	Action".	physically	not have political	actions, leads to	benefits); action complies with	
action in order to	outcomes or	(4 = >\$1M, 3=	(4 = >\$1M, 3= 1M	implemented	or community	increase in social	environmental regulations; there	
be most effective.	timing of	1M	\$250,000, 2=	to solve the	opposition. This	resilience, if	will be no immediate or	
(4 = Immediate, 3	climate	\$250,000, 2=	100,000	problem it is	also considers the	relevant; action is	cumulative negative	
= near-term (0-3	change	100,000	250,000, 1 =	meant to	"fundability" of	socially equitable.	environmental consequences	
years), 2 = short	impacts	250,000, 1 =	<\$50,000, NA,	address	an action.	(4 = High, 2 =	from the action.	
term (3-10 years),	(4 = Very	<\$50,000,	Unknown)	(4 = High, 2 =	(4 = High, 2 =	Medium, 0 = High)	(4 = Yes, 2 = Somewhat, 0 = No)	
1 = long-term (10+	flexible, 2 =	NA,		Medium, 0 =	Medium, 0 =			
years)	somewhat	Unknown)		Low).	Low).			
	flexible, 0 =not							
	flexible)							

Sea Grant

NOP RC&D

Critical Infrastructure

Port Townsend Marine Science Center

TOP 10 Strategies for Critical Infrastructure

STRATEGY	SCORE	ТҮРЕ	LEAD GROUP(S)	CO-BENEFITS
Update Emergency management and response planning to include climate change where needed	20	PLANNING	Emergency Manager	
Reduce inflow and infiltration to wastewater systems	19.5	POLICY	Operations and Maintenance Dept.	
Update planning documents to incorporate sea level rise and flooding where needed	19	PLANNING	Multi-Stakeholder	
Do outreach and education on climate adaptation to build community support	19	AWARENESS	Multi-Stakeholder	C (
Develop and utilize decision making tools related to climate change risks	18	PLANNING	Local Governments	
Create critical area flood mapping beyond FEMA's historical flood data	17	PLANNING	Multi-Stakeholder	
Encourage soft defenses for shoreline infrastructure	16	POLICY	Local Government & Private Sector	
Improve on-site stormwater management practices	16	POLICY	Multi-Stakeholder	
Participate in FEMA's Community Rating System (CRS)	16	PLANNING	Multi-Stakeholder	
Enhance stormwater retention in upstream areas	16	POLICY	Multi-Stakeholder	
			adaptation International NOP RC&D	Sea Grant 🔻

Critical Infrastructure Adaptation Strategies - Detail

CI-3: Update planning documents for sea level rise and flooding where needed							
Score	Type of	Timeframe for	Lead Group(s)	Opportunities or	Focus Area		
	Strategy	Implementation*		Concerns	Co-benefits		
19	Planning	Near Term	Multi- Stakeholder	Medium and long- term issue where	Ecosystems		
				planning now can help reduce future costs			

*Near-term (0-3 years), Medium-term (3-10 years), Long-term (>10 years)

Key Action Steps:

- Create a sea level risk district for inclusion in Comprehensive Plan and promulgate new codes and code changes associated with managing for sea level risk.
- Incorporate climate change and coastal hazard considerations into building codes by increasing freeboard requirements to two feet (three feet for critical projects) above the current 100-yr flood plain as buildings are redeveloped, developed, or renovated.
- See Supplementary Information C for more details.

Ecosystems

Jeff Taylor

Port Townsend Marine Science Center

OP 10 Strategies for Ecosy	WATER SUPPLIES	CRITICAL INFRASTRUCTURE		
STRATEGY	SCORE	ТҮРЕ	LEAD GROUP(S)	CO-BENEFITS
Enhance efforts to encourage breeding and planting of drought tolerant, resilient plant species	20	AWARENESS	Agriculture/Forestry & Edu. Orgs	٢
Incorporate climate change more explicitly into comprehensive plans and Shoreline Master Programs (SMP)	19	PLANNING	Local Governments	\$
Enhance promotion of agricultural best management practices to include future climate conditions	19	AWARENESS	Agriculture Sector and Edu. Orgs	
Update municipal codes to account for enhanced fire risk at forest/residential interface where needed	19	POLICY	Local Governments	\$
Increase regional capacity for water storage (preferable with natural systems)	18	PLANNING	Multi-Stakeholder	٢
Encourage FEMA to incorporate climate change in rate maps and guidance	18	PLANNING	State and County Government	0
Develop graphic tool to illustrate climate impacts	17.5	PLANNING	Multi-Stakeholder	۵ پ
Update financing policies for development in high risk areas	17	POLICY	Multi-Stakeholder	¢
Enhance efforts to incentive use of native plants landscaping in residential, commercial, industrial settings	17	AWARENESS	Local Gov't and Private Sector	٢
Utilize low cost citizen science monitoring and analysis approaches and technologies	17	AWARENESS	Research Institutions and Citizens	

Ecosystem Adaptation Strategies - Detail

E-2: Incorporate climate change more explicitly into comprehensive plans and Shoreline Master								
Programs (SMP)								
Score	Type of	Timeframe for	Lead Group (s)	Opportunities or	Focus Area Co-			
	Strategy	Implementation*		Concerns	benefits			
19	Planning	Near-term	County and City	N/A	Critical			
			Governments		Infrastructure			

*Near-term (0-3 years), Medium-term (3-10 years), Long-term (>10 years)

adaptation

NOP RC&D

Key Action Steps:

 Research sample language from other regional and national efforts. One example is the San Juan Islands-

http://www.sanjuans.org/documents/Loring_2014_sea_level_rise_regulatory_review.pdf.

- Use best available climate change projections and share relevant information with County and City governments in region.
- See "Planning Language Examples for Climate Resiliency" document in section Supplementary Information: C for more details.
- Other relevant and critical plans that would benefit from climate change planning include: functional plans, strategic plans (especially those of Ports, PUDs, and non-profits), and comprehensive schemes.

- And - I am the American

Ecosystem Adaptation Strategies - Detail

E-10: Utilize low cost citizen science monitoring and analysis approaches and technologies									
Score	Type of	Timeframe for	Lead Group (s)	Opportunities or	Focus Area Co-				
	Strategy	Implementation*		Concerns	benefits				
17	Awareness	Near-term	Research	Highly adaptive,					
			Institutions,	feasible, and in line with					
			Non-profit	political and social					
			Education	goals.					
			Centers, Citizen						
			Scientists						

*Near-term (0-3 years), Medium-term (3-10 years), Long-term (>10 years)

adaptation

NOP RC&D

Key Action Steps:

- Develop a citizen science program.
- Host trainings for interested individuals. Including detail about monitoring and analysis specific to emerging climate change impacts on the peninsula, such as: the presence of invasive/migrating fish species, monitored through trace DNA molecular analysis of seawater collected by citizen scientists.

- A State of the second second

Ecosystem Adaptation Strategies - Detail

E-12: Complete survey of sensitive submerged habitats and the species that utilize them								
Score	Type of	Timeframe for	Lead Group (s)	Opportunities or	Focus Area Co-			
	Strategy	Implementation*		Concerns	benefits			
16.5	Awareness	Medium-term	Research	Low social/political				
			Institutions,	feasibility, would				
			Citizen	address the ecosystem				
			Scientists	wide impacts				

*Near-term (0-3 years), Medium-term (3-10 years), Long-term (>10 years)

Key Action Steps:

- Inventory and monitor submerged habitats that may be affected by rising sea levels and ocean acidification.
- Promote preservation and restoration of submerged native aquatic vegetation for management of nutrient loading.
- Identify potential future habitats and protect species using or reliant on the habitat.

Water Supplies

Jeff Taylor

Barney Burke

TOP 10 Strategies for Water Supplies

STRATEGY	SCORE	ТҮРЕ	LEAD GROUP(S)	CO-BENEFITS
Enhance education on drought & water supplies issues for the peninsula	20	AWARENESS	Multi-Stakeholder	
Adopt new regulations requiring water-efficient appliances	20	POLICY	State Government	
Promote and incentivize smart irrigation technologies for agriculture	20	AWARENESS	Agricultural Sector	
Identify monitoring needs and enhance water supply monitoring	19	AWARENESS	Multi-Stakeholder	
Enhance efforts to educate home and business owners on the value of on-site water conservation, retention, and catchment	18	AWARENESS	Multi-Stakeholder	٥
Continue to study ways to enhance water storage and groundwater recharge	18	PLANNING	Water Utility & Local Governments	
Encourage forestry practices promoting water retention within the watershed	18	AWARENESS	Forestry Sector	
Research or develop model to assess sea level rise and saltwater intrusion to groundwater	18	PLANNING	Local Governments	٥
Improve forecasting for future water supply and demand	18	PLANNING	Water Utility Managers	
Map water retention values for ecosystems	18	PLANNING	Multi-Stakeholder	

Water Supplies Adaptation Strategies - Detail

WS-21: Explore opportunities for artificial recharge of groundwater aquifers							
Score	Type of	Timeframe for	Lead Group (s)	Opportunities or	Focus Area Co-		
	Strategy	Implementation*		Concerns	benefits		
11	Planning	Long-term	Multi-	Minimally adaptable,			
			stakeholder	high cost, facing			
				technical and political			
				barriers			

*Near-term (0-3 years), Medium-term (3-10 years), Long-term (>10 years)

Key Action Steps:

- Research options, including infiltration basins, injection wells, and artificial lakes/ponds.
- Assess water sources (reclaimed water, stormwater, peak river flows).
- Collaborate with WA Department of Ecology on their reclaimed water rules (accepting comments on new rule promoting reclaimed water in fall 2015).

LESSONS LEARNED

- Use champions to get people to the table
- Give participants something to do
- 1 + 1 = 3 eg: water managers
- "Preparedness" is palatable
- Framing vs. openness
- Publish

LESSONS LEARNED: Create Useful Tools

- SLR probabilistic modeling
- Interface with NOAA Sea Level Rise Viewer
- Spreadsheet of sortable adaptation strategies
- Database of sources/ data
- Sample planning language

A REAL PROPERTY OF A DESCRIPTION OF A DE

adaptation

NOP RC&D

Next Steps

- Presenting to jurisdictions, others
- Input on Comp Plans
- NTA status
- Monitoring Plan

Thank You!

Cindy Jayne cindyjaynept@gmail.com

For full report, see www.noprcd.org

THIS PROJECT HAS BEEN FUNDED WHOLLY OR IN PART BY THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY UNDER PUGET SOUND ECOSYSTEM RESTORATION AND PROTECTION COOPERATIVE AGREEMENT GRANT PC-00J20101 WITH WASHINGTON DEPARTMENT OF ECOLOGY. THE CONTENTS OF THIS DOCUMENT DO NOT NECESSARILY REFLECT THE VIEWS AND POLICIES OF THE ENVIRONMENTAL PROTECTION AGENCY, NOR DOES MENTION OF TRADE NAMES OR COMMERCIAL PRODUCTS CONSTITUTE ENDORSEMENT

OR RECOMMENDATION FOR USE.