County: Clallam Grant No: G1000003

PROJECT TITLE: MRC Action and Administration

DELIVERABLE FOR TASK NO: 3.2

PERIOD COVERED: May 1, 2010 through June 30, 2011

DATE SUBMITTED: June 30, 2011

This report was funded in part through a cooperative agreement with the National Oceanic and Atmospheric Administration.

The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies.

Groundwater Quality Monitoring in the Shallow Aquifer near Sequim, Clallam County, WA

Phase II

Prepared by:
Ann Soule, L.Hg.
Clallam County Environmental Health Services¹

Prepared for:
Clallam County Marine Resources Committee
CZM 310 Grant no. G10-00003 Task 3.2

June 2011

Summary

Concern about impacts to groundwater and water quality in general from stormwater runoff prompted the Clallam County Marine Resources Committee (MRC) to fund a two-phase study to determine the vulnerability of the shallow aquifer to stormwater contamination. For Phase I (2009), Clallam County Environmental Health (CCEH) staff in the Health & Human Services Department coordinated a field effort with the goal of determining generalized groundwater flow patterns around the City of Sequim, and the vulnerability of shallow wells to impacts from surface activities. Results from this effort were reported in "Groundwater Quality Monitoring in the Shallow Aquifer near Sequim, Clallam County, WA: Phase II," June 2009.

For Phase II (2010), the purpose was to investigate groundwater quality in the shallow aquifer draining to streams and marine waters of the Dungeness watershed. Dual objectives included determining (a) the ambient quality of shallow groundwater for a broad region (determined by the MRC as east of the Dungeness River downgradient from City of Sequim), as well as (b) the concentrations of specific stormwater contaminants for wells found in Phase I to be vulnerable to land activities. (Soule 2010)

¹ Health & Human Services, 223 E. 4th Street, Suite 14; Port Angeles, WA 98362; asoule@co.clallam.wa.us

Ambient groundwater quality was estimated through analysis of nitrate, ammonia, and chloride in up to 25 shallow domestic wells, along with pH, dissolved oxygen, and conductance. Data analysis of field nitrate measurements indicates that a third of all wells sampled have nitrates above 5 mg/L, which indicates advanced degradation from land activities and the possibility that other contaminants may be present – depending on the source(s) of nitrates – and which suggests that yearly testing is warranted. Up to 70% had a nitrate concentration above background (1 mg/L).² The drinking water standard for nitrate as N is 10 mg/L.

The wells with the highest nitrate concentrations are near developed areas in and around the city limits; wells with the lowest concentrations are in Dungeness, where the soils are dominated by clay and dissolved oxygen is low (<3 mg/L).

Four of seven wells had undetectable or at-detection levels of ammonia, and the highest concentration found was 0.515 mg/L. Table 5 contains complete results. For the five wells that were tested for ammonia in the Dungeness/Three Crabs Rd. community, all had undetectable nitrate (<0.4 mg/L). One of these had an ammonia concentration higher than the corresponding nitrate, making ammonia the predominant form of nitrogen. This well is located adjacent to Golden Sands canals which have relatively high ammonia according to Woodruff et. al., 2009.

Chloride results were 38 mg/L and lower, far from the drinking water standard of 250 mg/L. The highest concentrations of chloride, relatively speaking, were found in wells adjacent to salt water; the lowest were found in wells closest to the Dungeness River.

Potential stormwater contaminants including petroleum hydrocarbons, pesticides, PCBs, and metals were not detected in wells selected for their known vulnerability to impact from land uses (i.e., based on elevated nitrate concentrations). On the other hand, high nitrate concentrations were confirmed, and for some wells this implicates stormwater runoff or leakage from sewered residential and commercial areas as the probable source.

Recommendations include continued land use management efforts to oversee septic system maintenance, regulate septic system densities, and treat stormwater runoff to protect groundwater quality. Additional recommendations include continued education to prevent nonpoint source pollution and research into nitrogen loading, especially in the Dungeness / Three Crabs area.

Corrected results are reported here, and should be viewed as estimates.

-

² A note about field nitrate measurements: results for six split duplicates analyzed in a laboratory indicate that the field method may under-report actual nitrate concentration by up to about 25%. A linear correlation between field and lab replicates was applied to the complete data set, as summarized in the Results and Discussion section.

Background and Objectives

As planned with representatives of the Clallam County Marine Resources Committee (MRC) in 2009-2010, the objectives of this two-phase project were to investigate groundwater quality in the shallow aquifer draining to streams and marine waters of the Dungeness watershed, with focus on the potential for stormwater contamination. The water quality of shallow marine waters in the watershed, particularly Dungeness Bay, is degraded by bacterial contamination causing closure of some areas to the commercial and/or recreational harvest of shellfish. Nutrient contamination has also been documented and is suspected to contribute to macroalgae blooms (CCD 2009 and Shaffer 2002), which exacerbate water quality and habitat issues for fish and wildlife.

Groundwater is known to discharge from the aquifer system to lower-watershed streams as well as to marine water (Thomas 1999). The Sequim-Dungeness aquifers are known to be susceptible to contamination from land activities due to coarse soils and underlying geology. Nitrates have been found at levels elevated above natural conditions and rising, sometimes to levels exceeding the drinking water standard, since the first broad survey conducted by USGS in 1980 (Thomas 1999; Drost 1983 and 1986).

The project builds on a 2005 study by CCEH establishing baseline groundwater quality for County residents with drinking water wells downgradient of commercial/light industrial development in City of Sequim's western city limits (Soule 2005). In that study, six wells were tested in May 2005 for nutrients (nitrates, TKN), metals scan (total rather than dissolved), pesticides scan + PCBs, other organics (hydrocarbon identification, semi-volatile organics scan), pathogens (total coliform and Pseudomonas aeruginosa), and Total Dissolved Solids (TDS). Detectable results included very-low to moderately-high levels of nitrate, low to moderate TDS, and trace levels of chromium and zinc. Other parameters were not detected.

In 2009, Phase I of this project investigated relative vulnerability of study wells in the 2005 focus area and beyond using nitrate as an indicator (Soule 2009a, b). While no samples exceeded the drinking water standard for nitrates, five of 16 wells had nitrates above the trigger level of 5 mg/L nitrate as Nitrogen. 80% of sampled wells had nitrate levels indicating evidence of impact from human activities (>1 mg/L).³ Recommendations from Phase I were incorporated into the monitoring plan for Phase II as much possible, including provision for collection of ample replicates to evaluate field-lab discrepancies.

The MRC study also responds to goals of a concurrent stormwater assessment project managed by Clallam County Dept. of Community Development under a grant from the EPA, intended to result in stormwater management regulations. Recommendations received by state specialists cooperating on the EPA project have been incorporated during the planning and final reporting phases (Pitz 2009-2011). In particular, Charles Pitz guided project design for the two phases, beginning with a screening-level groundwater quality assessment for wells in the shallow

concentrations of nitrate... were estimated be lower than 1.0 mg/L."

_

³ USGS (Drost 1983) reports statistics for 129 wells (90% from the shallow aquifer) sampled for nitrates in the Sequim-Dungeness area in June 1980. Results range from undetected to 2.50 mg/L, with a median of 0.37 mg/L (nitrate + nitrite as N). Similarly, USGS (Thomas 1999) reports (pg. 92), "For this study area, natural

aquifer near historically "urban" zones to determine their relative vulnerability to contamination. Phase II broadened the area surveyed for vulnerability while targeting sampling for stormwater contaminants on wells found in Phase I to be vulnerable. In addition, the correlation between field and lab replicates was initially documented by Pitz.

Finally, while many surface water quality and groundwater resource investigations have been conducted in the Dungeness watershed in recent years, the ambient groundwater quality overall has not been assessed for more than a decade. Sampling under this project will fill the need for an update in the northeastern portion of the watershed, at least for the shallow aquifer. In addition, ammonia in groundwater has not been tested since 1996 (Thomas et. al. 1999), and inorganic nitrogen concentrations found in groundwater-fed creeks⁴ (Woodruff et. al. 2009) have generated interest in testing for ammonia in addition to nitrate in areas of fine-grained soils, shallow water table, and known sources of nitrogen (e.g., higher densities of septic systems).

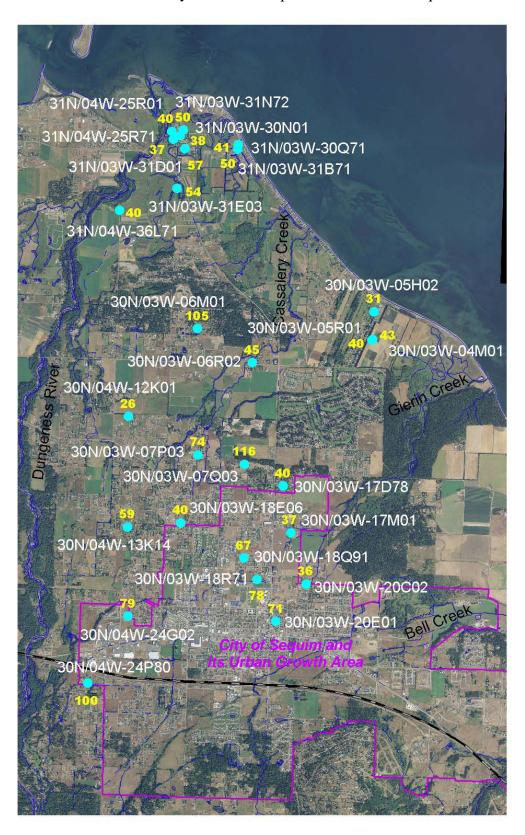
-

⁴ Woodruff et. al. (2009) reported that ammonia in surface water samples was elevated in spring-fed creeks compared to the Dungeness River, and lacked seasonal differences. The authors speculate that the constancy of the speciation of nitrogen compounds year-round indicate a constant source, such as septic system effluent.

Brief Project Description

As described in the previous section, the MRC chose to conduct this project for the purpose of investigating groundwater quality in the shallow aquifer draining to streams and marine waters of the Dungeness watershed. The specific approach involved determining (a) the ambient quality of shallow groundwater for a broad region (determined by the MRC as east of the Dungeness River downgradient from City of Sequim), as well as (b) the concentrations of specific stormwater contaminants for wells found in Phase I to be vulnerable to land activities.

The budget did not allow for construction of project-specific monitoring wells, so CCEH selected several study wells used for Phase I and additional wells used for domestic water supply and completed in the shallow aquifer; preference was given to wells involved in previous groundwater quality studies. A side benefit of using shallow-aquifer domestic supply wells is that associated public-health risk was also assessed, and results mailed to participating well owners. Thousands of residents in this portion of unincorporated Clallam County rely on private and small group wells tapping the shallow aquifer (as well as deeper aquifers) for their water supply.


Figure 1 features the study area and study wells.

Samples were collected and analyzed for nitrates in all cases, and bacteria, chlorides, ammonia, and selected stormwater contaminants in subsets of the study well group. The project followed the Quality Assurance Project Plan (QAPP) approved by Ecology (Soule 2010), involving procedures accepted by state and federal agencies for well and analyte selection, sampling and handling methods, laboratory analysis, data entry and management, and statistical analysis for quality assurance.

CCEH mailed all field measurements and lab results to each participating well owner. In addition to producing this report, CCEH presented project conclusions and recommendations to the Clallam County Marine Resources Committee in May 2011 and to the Sequim-Dungeness Clean Water Work Group in June 2011; the report is posted on www.clallam.net. Project and site information was submitted to Ecology's EIM in June; water quality and water level data will be submitted later this year.

Figure 1. Study area and study wells, showing well depth (in feet) and ID.

All study wells are completed in the shallow aquifer.

Methods

A Quality Assurance Project Plan (QAPP) for Phase II was prepared by CCEH staff (Soule 2010) and approved by Ecology prior to commencement of well selection and field work. The QAPP formalized data quality objectives, specific sampling design, field protocols, laboratory methods, quality control approach, and how data and project reporting would be accomplished.

Phase II included 27 wells total: five were selected based on relative vulnerability established in Phase I; two were used for water level measurement only, and not sampled. All are in current use for residential or commercial purposes except one, which was decommissioned a few weeks after measurement. Figure 1 shows study well locations and depths. Additional well characteristics and static water level measurements are included in Appendix A.

Chemical analyses were selected based on recommendations (Pitz 2009) that general vulnerability to contamination be assessed in "Phase I" before spending the resources necessary to sample and analyze for specific stormwater contaminants in "Phase II". Specifically, nitrate was chosen as a good screening parameter for both Phase I and II because it is conservative and mobile in groundwater relative to contaminants typical of stormwater such as hydrocarbons and metals, which are adsorbed by most soils for some length of time. In addition, field measurement of nitrate such as with a Chemetrics photometer reduces expense and provides immediate results. The QAPP details the selection process for all constituents; Table 1 lists potential water quality analyses and associated details.

Table 1. Constituents of interest

Constituents of interest	Analytical method	Detection limit	State standard*	Price per sample**	Phase
nutrients:					
Nitrate as N (NO ₃ as N) Lab	SM 4500-NO3-D	0.5 mg/L	10 mg/L	\$25***	I and II
Nitrate as N (NO ₃ as N) Field	EPA 353.3	0.4 and 1.13 mg/L	10 mg/L	\$1.25	I and II
Ammonia (optional)	EPA 350.1	0.005 mg/L	Not defined		II
other inorganics:					
Chloride Field (optional)	SM 4500-Cl- E	2.5 mg/L	250 mg/L	\$1	II
metals (total):					
chromium (Cr)	EPA 200.7	0.001 mg/L	0.1 mg/L	\$60 for	II
copper (Cu)	ICP scan includes	0.001 mg/L	1.0 mg/L	scan	
lead (Pb)	all metals listed,	0.001 mg/L	0.05 mg/L		
nickel (Ni)	plus others	0.005 mg/L	0.1 mg/L		
zinc (Zn)		0.001 mg/L	5.0 mg/L		
pesticides:					
Pesticides & PCBs scan	EPA 608 GC/EC	Various (ug/L)	Various	\$100	II
other organics:					
Hydrocarbon identification	NW-TPH-HCID	Gas range: 30 ug/L	800 ug/L if	\$50	II
		Diesel: 100 ug/L	benzene		
		Oil: 200 ug/L	present		
pathogens:					
Total coliform and E. Coli	SM9221B, 9222B	Not detected (MPN	1 colony/	\$20***	I and II
		or MF)	100 mL		

^{*}Ecology, 1996, Appendix A

^{**}AmTest, Inc., 2004 – except for Chemetrics field nitrate and chloride kits with low per-sample cost

^{***} in 2009, Twiss Laboratory in Poulsbo; in 2010, Clallam County Environmental Health Laboratory

County staff and assistants visited all study sites during fall of 2010. Protocols established in the QAPP were followed for each task. Soule and volunteer assistants first attempted to access each well to measure static water level (20 wells were measured; results are in Appendix A). Next, a County hose was attached to the nearest spigot to purge the well, and staff collected grab samples in a bucket at 3-5 minute intervals. Dissolved oxygen, conductivity, pH and water temperature were measured from the bucket samples using hand-held probes. After field parameters stabilized, samples were collected for various laboratory analyses as per the QAPP.

Seven field replicates⁵ were collected and submitted to the Clallam County Environmental Health Laboratory for nitrate analysis; three of these were split duplicates for laboratory precision. Five blanks were also submitted for lab nitrate analysis. Ammonia samples were collected for laboratory analysis from seven sites, six of which were in proximity to surface water detections of ammonia as described above. The project was budgeted for five analyses of potential stormwater contaminants. However, the QAPP dictated that 10% of samples had to be split duplicates, which meant only four different wells could be sampled for each parameter. Ammonia, TPH, pesticide/PCB, and metals samples were transported to AM Test Labs in Redmond, WA, for analysis.

Nitrate was measured in the field using a Chemetrics V-2000 photometer. ⁶ Chemetrics measurements for nitrate were made for eight "split duplicates," i.e., on the same grab sample. Three blanks were also tested in the field with the nitrate kit.

Chloride analysis was optional, of interest especially in wells close to the marine shoreline. Chloride was measured for 18 wells, also using the Chemetrics photometer; five split duplicates and four blanks were also measured. Because chloride is not a primary drinking water contaminant, precise results were not critical and laboratory verification of field kit results for quality assurance was not conducted. Chloride results should be considered estimates.

Other field activities included tagging the well with Ecology unique ID #s as needed, sketching and photographing the site.

It was intended that County building permit and state agency public water system data would be compiled and reported as well; however, resources ran out before that was accomplished.

Data entry of well log information and field notes to the County groundwater database was performed by Soule, who then mapped well locations in the County's GIS. Two-foot Lidar contours were used to establish wellhead elevations. Laboratory and field water quality results were entered by a volunteer with QC by Soule.

The author wishes to also acknowledge and express thanks to field assistants Dick, Rhonda, and Joe Dapcevich and data entry assistant Betsy Robins (all Clallam County Beachwatchers).

⁵ Because field measurements were done on the final grab sample collected over a 10-20 minute time frame, collection of a true "split duplicate" concurrent with the final grab sample was not always achieved. Three out of seven field replicates were true split duplicates.

 $^{^6}$ Chemetrics "Nitrate3" ampoules were used when the anticipated concentration of nitrate was above 2 mg/L. For samples expected to be under 3 mg/L, "Nitrate2" ampoules were used, with a range of 0.40 - 3.00 mg/L.

Results and Discussion

Appendix B contains complete results for all water quality parameters tested. A discussion of groundwater flow and each groundwater quality constituent follows.

Groundwater Flow

Static water level data are fundamental to any investigation of groundwater hydrology. The direction of groundwater flow may be estimated to be perpendicular to water level elevation contours, developed from point water level elevations for multiple wells tapping the same aquifer. Accurate measurements of the elevation of the ground surface at several wellheads, height of the measuring point used for each well, and depth to water when it is in equilibrium are all needed to determine flow direction accurately, in addition to details of the geologic layers each well passes through.

Figure 2 shows the water level elevations for the southern half of the study area for fall 2010 and the inferred direction of groundwater flow. This generally agrees with earlier estimations of groundwater flow direction for the area east of the Dungeness River near Sequim found in Thomas 1999. The north-east regional flow direction also corroborates findings of Simonds and Sinclair (2002) that the shallow aquifer receives infiltrated water from the Dungeness River for most of the River's lower sections, adding an eastward component to generally north-flowing groundwater.

While study wells in the central portion of the study area were also measured, water level contours can not be estimated without more closely-spaced data points, and unless it is known that the wells are under similarly-confined conditions. In any case, Thomas 1999 illustrates that the gradient flattens within a few miles of the coast (see Figure 3).

Wells in the Dungeness community measured in this study have water levels between 2 and 7 feet below ground surface. These results indicate that either the water table is very shallow, the wells are under pressure at depth from confining layers between the ground and the well intake, or both. In fact, the water table is very shallow in this low-elevation area where wetlands and springs are prevalent and the vertical component of groundwater flow is upward. In addition, well logs show multiple clay layers adding up to 30' or more within the upper 50' — creating semi-confined conditions for groundwater tapped by these wells. Finally, tidal pressure likely adds to the dynamic nature of groundwater flow in upper portions of the system. Because of these complications, groundwater flow direction for a specific depth is not mapped for the Dungeness area even though the shallow zones are expected to be flowing generally northward, discharging into surface water.

<u>Nitrogen</u>

Nitrate

As described under "Methods" above, nitrate is a good parameter for tracking general trends in groundwater quality. Groundwater in the Dungeness watershed is naturally low in nitrates (<1 mg/L as N), but when nitrates are present, the annual high may be around June (Sinclair 2003).

Figure 2. Water level elevations in study wells and inferred groundwater flow direction (perpendicular to shallow aquifer elevation contours).

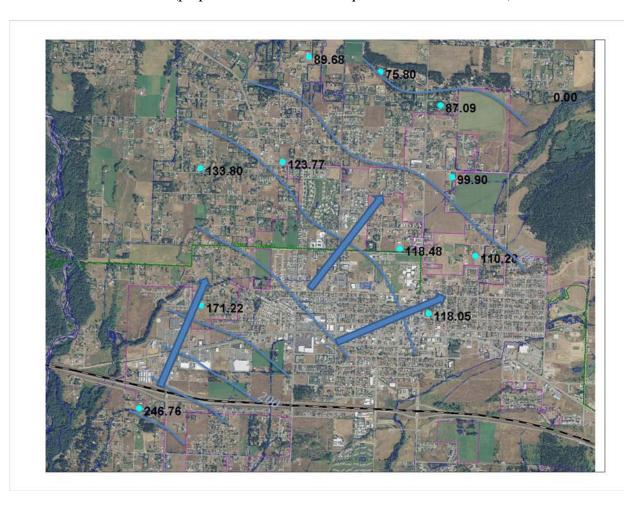
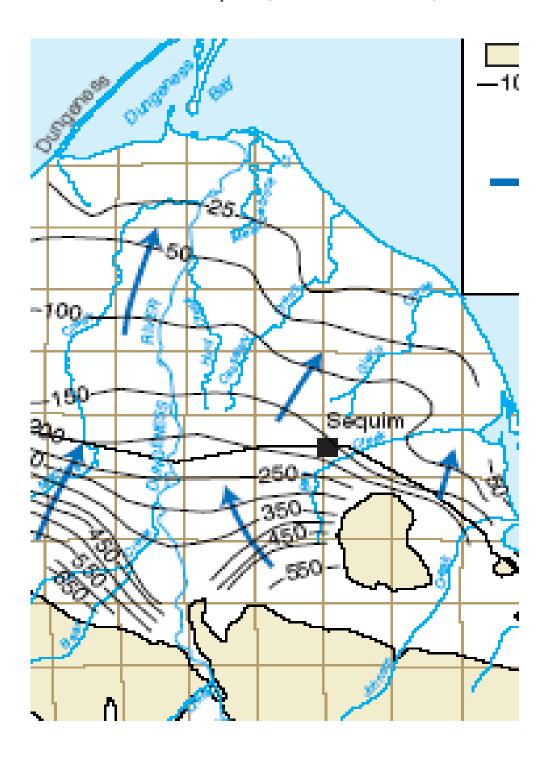



Figure 3. Regional groundwater flow; numbers indicate contours for the shallow aquifer. (from Thomas et. al. 1999)

When evaluating nitrate results for this project it is important to note that results for replicates analyzed by an accredited laboratory a day after field measurement were all higher than field results. This implies that the field nitrate measurement method under-reports actual nitrate concentration. Potential reasons for this are discussed in the next section on data quality. These data discrepancies are summarized in Table 2.

Table 2. Results of field and lab nitrate analyses conducted for replicate samples from seven wells sampled in Phase II.

Chemetrics field result (mg/L)	EH Lab result for replicate	Difference	% of lab result
7.53	10.6	-3.07	71%
6.28	8.63	-2.35	73%
6.29	8.36	-2.07	75%
2.77	4.5	-1.73	62%
1.05	2.13	-1.08	49%
0.85 (<1.13) (below field kit range)	2.1	-1.25	40%
0.28 (<1.13) (below field kit range)	0.67	-0.39	42%

Fortunately, a strong linear correlation was found when analyzing the relationship between these two data sets (Pitz 2011); the regression line and equation are shown in Figure 4. This correlation was applied to all "original" field measurements to obtain "corrected" nitrate concentrations listed in Table 3. Summary statistics for both sets of nitrate results are shown in Table 4. Please see the Data Quality Assessment section below for further discussion.

Figure 4. Linear relationship between seven original field measurements and associated lab results for replicate samples.

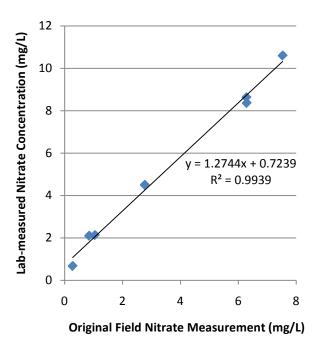
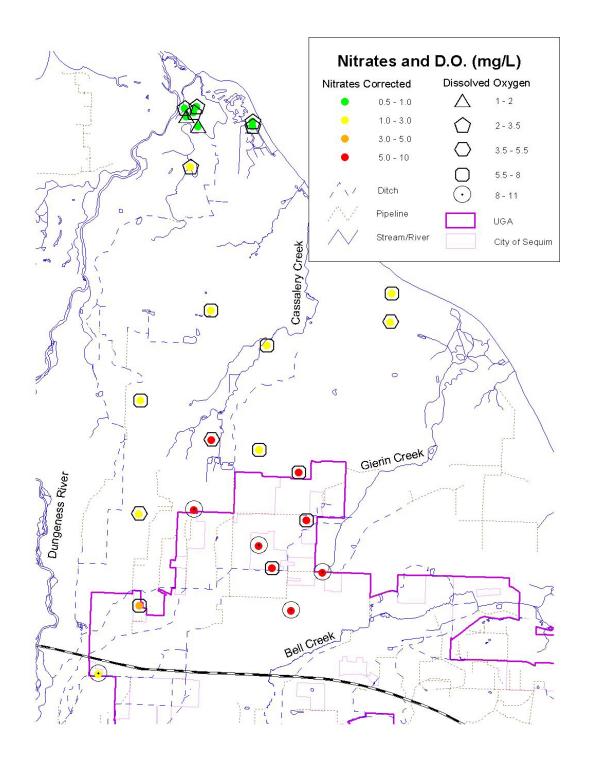


Table 3. Original, field-measured nitrate and "corrected" nitrate concentrations (based on linear regression shown in Figure 4).

Study Well ID	Original Field Result	Below Method	Corrected Field Result
-	(mg/L)	Detection Limit	Estimate (mg/L)
31N/03W-31N72	0.06	Х	0.8
31N/04W-25R71	0.06	Х	0.8
31N/03W-31B71	0.07	Х	0.81
31N/03W-30Q71	0.08	Х	0.83
31N/03W-31D01	0.1	Х	0.85
31N/03W-30N01	0.11	Х	0.86
31N/04W-25R01	0.15	Х	0.92
31N/03W-31E03	0.25	Х	1.04
30N/04W-13K14	0.28	Х	1.08
30N/03W-06R02	0.7		1.62
30N/03W-06M01	0.85	Х	1.81
30N/03W-05H02	0.96		1.95
30N/04W-12K01	0.97	Х	1.96
30N/03W-07Q03	1.03	Х	2.04
30N/03W-04M01	1.05		2.06
30N/04W-24P80	1.13		2.16
30N/04W-24G02	2.77		4.25
30N/03W-18Q91	3.7		5.44
30N/03W-20C02	3.89		5.68
30N/03W-18E06	4.26		6.15
30N/03W-18R71	4.35		6.27
30N/03W-07P03	5.08		7.2
30N/03W-20E01	6.28		8.73
30N/03W-17D78	6.29		8.74
30N/03W-17M01	7.53		10.3


Table 4. Summary statistics for both original field nitrate results and "corrected" results after regression equation is applied. (n=25)

Field Results	>1 mg/L	>5 mg/L	Minimum	Median	Maximum
Original	about 50%	16%	Not detected (<0.4)	0.97	7.53
Corrected	about 70%	32%	(same)	1.96	10.3

In looking at the corrected field results, up to 70% of the 25 wells tested had a nitrate concentration above background (1 mg/L), indicating groundwater quality degradation from land activities. Potentially a third of all wells have nitrate above 5 mg/L, which indicates advanced degradation and the possibility that other contaminants may be present – depending on the source(s) of nitrates. The drinking water standard for nitrate as N is 10 mg/L.

Figure 5 shows the geographical distribution of "corrected" nitrate concentrations. The wells with the highest concentrations are near developed areas in and around the city limits—much of which is sewered; wells with lowest concentrations are in Dungeness, where the soils are dominated by clay and dissolved oxygen is low (<3 mg/L).

Figure 5. Nitrate ("corrected" field measurement) and dissolved oxygen results. Nitrification requires sources of both nitrogen and oxygen. Elevated nitrates are very unlikely to be found when D.O. is below 2 mg/L.

Ammonia

Samples from seven wells were tested in a laboratory for ammonia concentration in order to make a preliminary comparison of the relative concentrations of inorganic nitrogen species. Oxygenated groundwater facilitates nitrification of ammonia and nitrite to nitrate, making it unlikely to find ammonia in groundwater with >2-3 mg/L dissolved oxygen (D.O.). Most of the ammonia sampling sites were chosen because they are close to surface water detections of ammonia, and have relatively low dissolved oxygen. See Figure 6.

Four of seven wells had undetectable or at-detection levels of ammonia; the highest concentration found was 0.515 mg/L. Table 5 contains complete results. For the five wells that were tested for ammonia in the Dungeness/Three Crabs Rd. community, all had undetectable nitrate (<0.4 mg/L). One of these had an ammonia concentration higher than the corresponding nitrate, making ammonia the predominant form of nitrogen. This well is located adjacent to Golden Sands canals which have relatively high ammonia (reported in Woodruff et. al. 2009).

Table 5. All ammonia results in order of decreasing concentration,
and showing corresponding nitrate and dissolved oxygen concentration.

Well ID	Well Depth	Area	Ammonia- Nitrogen (mg/L)	Nitrate- Nitrogen (mg/L)	Dissolved Oxygen (mg/L)
31N/03W-31B71	50	Three Crabs Rd	0.515	<0.4	2.32
31N/04W-25R01	40	Dungeness	0.042	<0.4	2.43
30N/03W-04M01	43	Jamestown Beach	0.027	1.05	4.23
31N/04W-25R71	37	Dungeness	0.005	<0.4	1.45
31N/03W-31D01	57	Dungeness	<.005	<0.4	1.39
31N/03W-31N72	50	Dungeness	<.005	<0.4	3.37
30N/03W-17M01	37	North of Sequim	<.005	7.86	7.44

Nitrogen sources discussion

Many activities potentially contaminate groundwater, especially where soils are very permeable and/or the water table is shallow. Nitrate contamination in groundwater can be caused by overfertilizing, accumulations of animal waste, septic systems, and potentially by a leak in sewage conveyance pipes. Nitrate concentrations within aquifers change from season to season and time to time depending on the concentration, amount, and timing of contamination entering the aquifer, as well as the aquifer media (clay, sand, etc.), oxygen concentration (see above for more detail), and potential for dilution and/or denitrification. Historic land uses may cause "legacy" contamination as nitrogen compounds deep in the soil continue to leach out over time, after the land use has changed. Urban stormwater does not typically contain substantial loadings of nitrogen compounds unless the runoff contains fertilizer such as from intensively managed lawns or gardens, or dissolved pet waste. More information and an illustration of nitrates found in urban areas around Sequim may be found under the Stormwater Contaminants heading, below.

-

⁷ Acid deposition from the atmosphere may also be a source of nitrogen compounds, but is expected to be minor relative to other anthropogenic sources in this region.

Figure 6. Ammonia results for the Dungeness area, including dissolved oxygen (D.O.) and well depth. Ammonia is more likely to be found than nitrate when a source of nitrogen is present but D.O. is not.

In Phase I, CCEH compiled and analyzed two external sets of recent nitrate data to extend the investigation further. First, a plot of nitrate values associated with building permits since 2006 showed a few occurrences of nitrates in the 3-5 mg/L range to the southwest and north of the city limits. There was one value >5 mg/L, in an area where only the lowest levels were found in this MRC study.

Second, a cursory review of nitrate results between 2006 and 2010 for community water systems testing at the County lab showed several occurrences of 3-5 mg/L nitrates to the southwest and north of the city limits, but nothing >3 mg/L in the northwestern-most area. There were also at least 6 occurrences of nitrates >5 mg/L to the north of the city. Well depths were not available with these data sets, but the majority of wells drilled in the study area are completed in the shallow aquifer according to Ecology's well log database and USGS 1999.

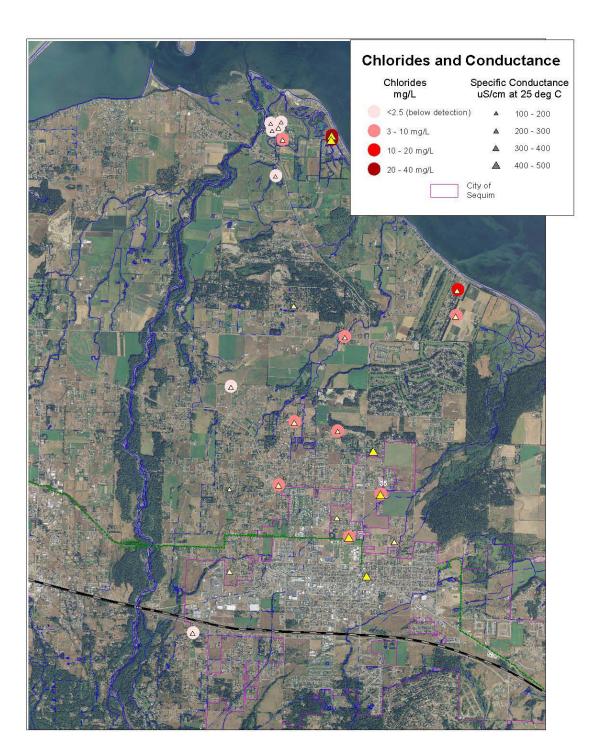
These analyses illustrate a common finding in local studies of nitrates in groundwater: nitrate concentrations may vary from low to high across small distances. Geologic and hydrologic variation in the subsurface, distinct well construction and sealing, and diverse, erratic sources of nitrogen released to the environment all contribute to inconsistent distribution of nitrates found from sampling domestic wells.

For example, the groundwater flow directions shown in Figures 2 and 3 support the theory that infiltration of relatively uncontaminated Dungeness River water could be diluting nitrates to some extent, over some distance. Irrigation ditches that aren't lined or piped usually also leak water, but high nitrate wells are found both near and distant to these. Factors to consider when testing these correlations include ditch water quality for the study period at these sites, and volume of ditch leakage, at minimum.

<u>Dissolved Oxygen</u>

Groundwater dissolved oxygen is of interest partly because it plays a role in the occurrence of nitrogen compounds. The nitrification process involves oxidation of organic nitrogen and ammonia to nitrite and nitrate. Groundwater with a high level of D.O. such as might be found in shallow, fast-moving, and/or more permeable zones would facilitate the nitrification process when nitrogen is present. Likewise, low D.O. levels would inhibit nitrification. (However, note that other factors including presence of certain bacteria also influence nitrification.)

In this study the range of D.O. was 1.4 - 9.2 mg/L (12 - 83%); all wells with nitrates above 3 mg/L had D.O. above about 4 mg/L. Note that D.O. levels can't be used to predict high nitrates since there may not be a source of nitrogen. As expected, there were no wells with low D.O. and nitrates above background.

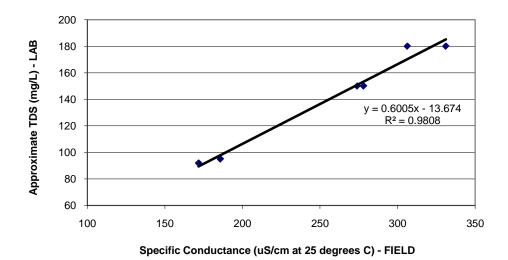

Chloride

Field measurement of chloride in 18 wells showed low concentrations consistent with previous studies (Drost 1986, Thomas et. al. 1999), as seen in Figure 7. Relative to all measurements

⁸ Total Nitrogen in Dungeness River samples from river miles 3.2 and 11 ranged less than 0.3 mg/L in recent sampling (2006-08) (unpublished data, Jamestown S'Klallam Tribe 2009)

made in this study, the highest concentrations were found adjacent to the marine shoreline (where some mixing is expected) and the lowest were nearest to the Dungeness River. As discussed under nitrogen, above, the River is low in chloride relative to groundwater, which means River leakage would effectively dilute groundwater chloride concentrations.

Figure 7. Chloride results, with conductance as well.



Specific Conductance

Specific conductance is highly dependent on the amount of dissolved solids in water. A relationship between field-measured specific conductance (in microsiemens per cm standardized to 25°C) and lab-measured total dissolved solids (TDS, in mg/L) was established in a 2005 study of groundwater quality in the south-western part of the study area, and is presented in Figure 7 below. Like nitrates, high concentrations of dissolved solids in water are a concern for human as well as ecosystem health. Excessive concentrations of dissolved solids can render water unfit for drinking or supporting aquatic life.

Chloride contributes to combined dissolved solids in water, so high conductance may sometimes indicate high chloride (note Figure 7). The state groundwater quality criterion for TDS is 500 mg/L, and for chloride (a secondary standard) is 250 mg/L (Chapter 173-200 WAC).

Figure 8. Correlation Diagram: TDS and Specific Conductance (from Soule 2005)

Although TDS was not directly measured in this study, the correlation shown above was used to estimate TDS from specific conductance for each study well in Table 6. From this equation, TDS might be a concern if specific conductance were in the range of 800-900 uS/cm @ 25°C, or higher.

A weak correlation between specific conductance and chloride suggests that conductance would probably need to be substantially higher than 500 uS/cm @ 25°C before chloride concentration might be a concern. Note, however, that an *increasing trend* in chloride could indicate advancing seawater intrusion, a problem which is sometimes irreversible.

Table 6, Specific conductance, chloride, and estimated (calculated) TDS for Phase II study wells

		Specific Conductance		011 11 (1)
Laurettan ID	D-1-	(uS/cm@25C)	TDS	Chloride (mg/L)
Location_ID	Date	(measured in field)	(calculated)	(lab analysis)
31N/04W-25R71	10/7/2010	173.4	90	<2.5
31N/03W-31E03	11/4/2010	183.8	97	<2.5
31N/04W-25R01	12/8/2010	186.4	98	<2.5
31N/03W-31N72	10/13/2010	196.7	104	<2.5
31N/03W-30N01	10/11/2010	200.7	107	<2.5
30N/04W-12K01	10/28/2010	209.4	112	<2.5
31N/03W-31D01	10/26/2010	212.2	114	4.96
30N/04W-13K14	12/2/2010	231.3	125	
30N/03W-06R02	10/13/2010	240.7	131	2.64
30N/03W-07Q03	12/3/2010	261	143	4.5
30N/04W-24P80	11/4/2010	287.2	159	<2.5
30N/03W-18Q91	11/4/2010	329.9	184	
30N/04W-24G02	11/18/2010	334.6	187	
30N/03W-18E06	10/28/2010	335.6	188	5.89
30N/03W-07P03	10/14/2010	341.3	191	7.68
30N/03W-04M01	12/2/2010	346.2	194	6.85
30N/03W-20C02	11/18/2010	349.5	196	
30N/03W-05H02	10/14/2010	371.9	210	11.04
30N/03W-06M01	12/2/2010	377.4	213	
31N/03W-30Q71	10/11/2010	409.2	232	38.04
31N/03W-31B71	10/7/2010	411.1	233	32.38
30N/03W-17D78	11/16/2010	423	240	
30N/03W-17M01	11/16/2010	436.3	248	7.83
30N/03W-18R71	12/3/2010	440	251	8.9
30N/03W-20E01	11/18/2010	501	287	
	Average	312	173	7
	Median	335	187	5
	Range	173 - 501	90 - 287	<2.5 - 38
	MCL	n/a	500	250

Other Field Parameters

In this study, temperature and pH data were collected primarily for determining the adequacy of well purging prior to sampling. It is worth noting that all well water is within the normal pH range and not acidic; the well with the highest pH is the same well with elevated ammonia. All field parameters are included in Table 7.

Table 7. Summary statistics for field parameters for 25 wells tested.

Parameter	Min	Median	Max
Temperature (°C)	8.3	10.9	12.7
pH (standard units)	6.8	7.7	8.5
Specific conductance (microsiemens/cm at 25°C)	173	335	501
Dissolved oxygen (mg/L)	1.4	5.9	9.2

Pathogens

Eighteen study wells were tested for total coliform bacteria presence/absence and, if present, checked for E. coli. All tested negative except one which was confirmed positive for coliform but negative for E. coli. The homeowner treated the well with chlorine and on the second retest it sampled negative for coliform.

Stormwater Contaminants

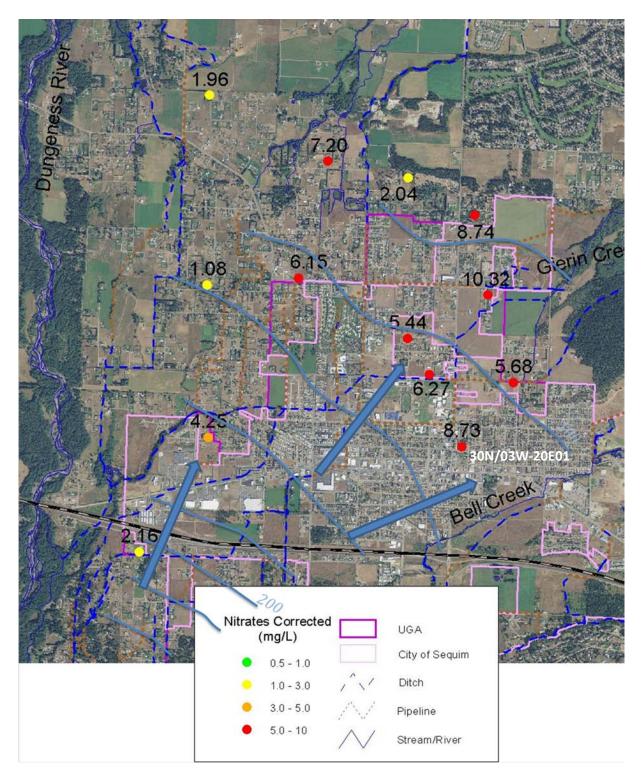
Sites at which stormwater contaminants were sampled are shown in Figure 9. Complete lab results are included in Appendix B. In summary, there is no evidence that shallow-aquifer drinking water wells vulnerable to land activities are experiencing contamination from metals or organics; however, advanced nitrate contamination is evident.

Metals

A total metals-minerals scan was conducted for four study wells (and one split duplicate), with 12-15 of 33 parameters detected at no more than trace levels. For parameters with groundwater quality criteria established, results were one to three orders of magnitude below the criteria. There were detections for several parameters for which no criteria have been established; in these cases there is no basis for interpreting health or environmental risk and detections are assumed to be typical and/or natural and of negligible concern.

Pesticides & PCBs

A scan for organics including pesticides and PCBs was conducted for four study wells (and one split duplicate). There were no detections of 26 parameters in any of the wells.


Hydrocarbons

A scan for petroleum hydrocarbons was conducted on four study wells (and one split duplicate). There were no detections in the oil and diesel range; however, all four had trace detections in the gasoline range – a very surprising result since it is improbable that contamination would be present in all four wells, whether from the same or separate sources. CCEH discussed results with the analyzing lab and learned that most uses of this method of analysis include sampling for benzene to better "fingerprint" the presence of actual gasoline hydrocarbons (as opposed to other small-chain carbon molecules such as methyl or vinyl chloride). One plausible explanation for detections on all four study wells is that plastic (PVC) water pipe is degrading, interfering with the test for stormwater contaminants. (AM Test 2011)

Nitrates

Four of the five wells used to assess vulnerability to stormwater contamination had nitrate levels indicating advanced degradation; the fifth indicates moderate degradation (based on corrected nitrate estimates from Table 3). In the case of well 30N/03W-20E01, close to downtown Sequim, the upgradient neighborhood is all sewered and septic systems are at a distance, in moderate-low densities (see Figure 9). This suggests another source of nitrogen may be responsible for high nitrates in this well (8.73 mg/L), such as fertilizer leaking into the ground with stormwater recharge and/or leaking sewage conveyance pipes. Other study wells with nitrates >5 mg/L have upgradient recharge areas that are partly or fully served by onsite septic systems.

Figure 9. Southern-central study area showing land uses (areas within city limits are sewered; 2009 aerial photo), estimated nitrate concentrations, water table contours and estimated groundwater flow direction (arrows).

Data Quality Assessment

Data Validation

Precision

Field nitrate split duplicate pairs: 21% Does NOT meet DQO (barely)

Lab nitrate split duplicate pairs: 4% Does meet DQO

Field-lab nitrate replicate pairs: 26% Does NOT meet DQO

Field chloride split duplicate pairs: 1.5% Does meet DQO

Lab ammonia split duplicate pairs: 25% Does NOT meet DQO

Lab bacteria split duplicate pair: 0% Does meet DQO

Lab metals/minerals split dupe pairs: 2-2.7% Does meet DQO

Analytical Bias

Blanks meets DQO for all parameters

Matrix spikes

Nitrate – lab not known (no spikes conducted)

Ammonia meets DQO Metals meets DQO Pesticides-PCBs meets DQO

Check standards

Nitrate – lab meets DQO Nitrate – field meets DQO

Chloride – field not known (no check standard available)

Ammonia meets DQO Metals meets DQO Pesticides-PCBs meets DQO

Completeness

Goal of 80% usable data for everything except bacteria, which was 90%. This objective was met for all parameters **provided** that field nitrate results are replaced with corrected estimates.

Appendix B contains quality assurance calculations for all parameters reported.

Discussion about Nitrates

CCEH staff used the Chemetrics photometer in the County EH Laboratory to measure nitrate check standards both for Phase I and Phase II. For Phase I, the relative difference was 2-14% in three cases where the known nitrate concentration ranged from 1-10 mg/L. The RPD was 23% when nitrate was around 0.5 mg/L, and 100% when nitrate was <0.5 mg/L (typical when close to/below the method detection limit). In Phase II, the RPD was 0.2% and 4.6% for two measurements of a 10.0 mg/L check standard, and 13%, 23%, and 11% for three measurements of 4.96 mg/L check standards. As expected, closer agreement was achieved for higher levels.

These results are within the Data Quality Objective for nitrate, which indicates good agreement between the Chemetrics kit and lab standards when analyzed in the lab at room temperature.

Conversely, there is evidence from both Phase I and II replicate analyses that the Chemetrics photometer may under-report nitrate concentration in the field. In Phase I, two field measurements made using the Chemetrics photometer were 25% and 39% lower than associated laboratory results on replicate samples analyzed at Twiss Analytical in Poulsbo (using ion electrode method SM4500-NO3-F). In Phase II, seven replicates were collected total and analyzed for nitrate at the CCEH Lab (using ion electrode method SM4500-NO3-D); five of these had concentrations well above the detection limit for both methods. Field measurements were from 49-79% of associated laboratory analyses conducted one day later; the RPD for the five pairs ranged from 23-68% (well above the DQO).

This high level of variability is surprising given the relatively good agreement between methods indicated by check standards in the lab, described above. The difference may be due to changing conditions, potentially including:

- the additional time between collection of the grab sample (from which field measurements were made) and the lab sample (suggesting that nitrate concentration increases as purge time increases); and/or
- the time lag before lab analysis (suggesting changes in chemistry during storage). Another possibility is that the temperature of the sample during analysis could influence the method and thus the measured result for either or both methods. (Chemetrics 2011; Pitz 2011)

The implications of field nitrate variability on this study are not large because the objective to screen current ambient water quality for the study area is fulfilled based on corrected estimates of nitrate concentration. The conclusions from using corrected estimates are not significantly different than using original measurements, except that the aerial extent of elevated nitrates increased. Of course, it is very important for well owners to be aware that their drinking water may have higher nitrates than originally reported – especially when they're above 3-4 mg/L. CCEH routinely informs participants of test results, study reports, and related information.

Discussion about Ammonia

Precision objectives were not met for ammonia analyses because the laboratory was erroneously tracking an objective of 28%. <u>Implications are minimal since project objectives for inorganic nitrogen involved preliminary screening only</u>, and additional factors (e.g., sampling was conducted in a high-flow setting exposed to atmospheric conditions) also warrant caution in the use of ammonia results for management decisions without further research. (AmTest 2011)

Discussion about Chloride

<u>Chloride results should be considered estimates of actual concentration</u>, because no duplicates for quality assurance were collected and check standards were not available within the project time frame or budget.

Conclusions and Recommendations

Several conclusions may be made from the Phase II study of groundwater quality in and around Sequim, as follows:

- New information from monitoring ambient groundwater quality in the study area includes:
 - o Advanced degradation evidenced by nitrate concentrations >5 mg/L were found in areas of higher-density residential and commercial land uses.
 - Impacts from land activities evidenced by nitrate concentrations >1 mg/L were found in most areas, except where clay soils are most prevalent and available dissolved oxygen appears to be minimal.
 - Ammonia was found above background in one well adjacent to surface water with known high ammonia levels; otherwise, ammonia was not detected or found at trace levels in six other wells tested.
 - o Estimated chloride concentrations were generally very low with the exception of the two wells very close (about 100 yards) to the marine shoreline. On the other hand, even these concentrations were a fraction of the drinking water standard.
 - o Groundwater chlorides (and possibly nitrates) may be diluted by recharge (leakage) from the Dungeness River.
 - o Dissolved oxygen ranges from low to moderate; whenever nitrates are elevated above background, the D.O. is at least 2 mg/L.
 - o Specific conductance and estimated Total Dissolved Solids is low to moderate.
 - o pH is well within normal range except for one well with pH 8.45 (the same well that had elevated ammonia).
 - o Nitrate measurements made in the field using the Chemetrics V-2000 photometer likely under-estimate true nitrate concentration.
- New information resulting from monitoring for potential stormwater contaminants in wells found to be vulnerable to land activities follows. At the time of this study (Fall 2010), there were:
 - o no detections of pesticides or PCBs;
 - o non-elevated / trace-level metals (total, rather than dissolved);
 - o indications of petroleum hydrocarbon (gasoline range) which were more likely resulting from PVC in plumbing than from aquifer contamination; and
 - o elevated nitrates.

Conclusions from Phases I and II combined include:

- On a regional scale, the shallow aquifer may be fairly well protected from many stormwater contaminants.
- The shallow aquifer is susceptible to nitrate contamination in most areas, from stormwater and known potential sources such as septic systems and fertilizer.
- Factors affecting nitrate concentration at a given property include, at minimum:
 - o Zone of the aquifer, and whether clay layers are present in the geologic profile
 - o Proximity to and volume/concentration of the source of contamination

- Whether the source is current and ongoing or historic
- o Integrity of the well seal around the upper casing (related to age/construction)
- o Rate and direction of groundwater flow (varies by season and pumping patterns)
- o Amount of dilution from uncontaminated irrigation ditches, ponds, and streams
- o Whether the sample is from the plumbing, well casing, or fresh from the aquifer

Recommendations include:

• Land management

- o Ensure stormwater runoff from urban, suburban, and agricultural communities is treated prior to entering the environment, including into the aquifer.
- o Ensure septic systems are designed and maintained to prevent incidental as well as accumulated contamination of surface water and aquifers.
- o Ensure septic system densities are regulated according to soil type, to avoid accumulating nitrate contamination.
- o Ensure that sewer facilities are maintained to prevent contamination through leakage into the environment.
- o Continue to enforce and review stormwater facility monitoring programs required by City of Sequim or Clallam County.
- o Future stormwater treatment facilities should monitor groundwater quality from downgradient monitoring wells (rather than facility effluent or lysimeters; see Appendix A from Soule 2009, Phase I).

Education

- O Use of nitrogen fertilizer outdoors may impact groundwater quality, as seen in research from other areas that are sewered but built on coarse-grained soils.
- o Educate well owners about the importance of a solid well seal and maintaining a contaminant-free zone (100' radius) around the wellhead.

Research

- o Study nitrogen loading into the perched water table in Dungeness / Three Crabs.
- o Sample groundwater seeps in the nearshore for nutrients and other contaminants.
- o Continue ambient monitoring including field measurement of D.O. and specific conductance.
- Continue to track trends in regional nitrate concentrations by taking advantage of publicly-available data, such as from County building permits and stateregulated public water systems.
- o Investigate possible correlations between groundwater nitrate and ammonia concentrations and proximity to surface water, well age and construction, soil type and underlying geology, current land uses such as septic system density, historic land uses such as dairy farms, and other factors.
- o Investigate nitrate variability over different purge times, storage times, and sample conditions (temperature, dissolved oxygen), and using different methods.

The net result of Phase I and II investigations of groundwater quality and stormwater impacts has greatly advanced the understanding and implications of these topics for the study area. The author wishes to thank the Clallam County Marine Resources Committee for its forward thinking in associating marine water quality with the health of the upland environment, and specifically with groundwater that ultimately discharges to fresh and marine surface waters.

Bibliography

- AmTest Labs, Inc. 2010-2011. Personal communication with Kathy Fugiel, and website: www.amtestlab.com
- Chemetrics, Inc. 2010-2011. Personal communication with Melanie, and website: www.chemetrics.com
- Clallam Conservation District. 2009. Three Crabs Area Assessment. Clallam Conservation District, Port Angeles, Washington.
- Drost, Brian. 1983. Impact of Changes in Land Use on the Ground-Water Ssytem in the Sequim-Dungeness Peninsula, Clallam County, Washington. USGS Water Resources Investigations Report 83-4094.
- Drost, Brian. 1986. Water Resources of Clallam County, Washington: Phase 1 Report. USGS Water Resources Investigations Report 83-4227.
- Kent, R. and K. Belitz. 2004. Concentrations of Dissolved Solids and Nutrients in Water Sources and Selected Streams of the Santa Ana Basin, California, October 1998– September 2001. USGS Water-Resources Investigations Report 03-4326, Sacramento, California.
- Kimsey, M. 2004. "Groundwater Investigation of the Nitrate and Bacterial Contamination in Agnew, WA." Washington State Dept. of Ecology Environmental Assessment Program, Olympia, Washington. 4 pgs.
- Phillips, S.W., M.J. Focazio, and L.J. Bachman. 1999. Discharge, Nitrate Load, and Residence Time of Ground Water in the Chesapeake Bay Watershed. USGS Fact Sheet FS-150-99; http://pubs.usgs.gov/fs/fs15099/pdf/fs150-99.pdf
- Pitt, Robert. 1996. Groundwater Contamination from Stormwater Infiltration. Ann Arbor Press, Inc., Chelsea, Michigan. 124 pgs. plus annotated bibliography on groundwater contamination.
- Pitz, Charles. 2009. "Recommendations for Groundwater Monitoring in the West Sequim Area." 7 page memorandum, 3 tables.
- Pitz, Charles. 2009-2011. Personal communication.
- Shaffer, J.A. 2002. Macroalgae blooms and nearshore habitat and resources of the Strait of Juan de Fuca. In: Proceeding, Puget Sound Research 2001. Puget Sound Water Quality Action Team, Olympia, Washington. http://www.psat.wa.gov/01_proceedings/start.htm
- Simonds, Bill and Kirk Sinclair. 2002. Surface Water-Ground Water Interactions Along the Lower Dungeness River and Vertical Hydraulic Conductivity of Streambed Sediments, Clallam County, Washington, September 1999-July 2001. USGS Water-Resources

- Investigations Report 02-4161; Washington State Department of Ecology Report 02-03-027. 62 pgs.
- Sinclair, Kirk. 2003. Groundwater Quality in the Agnew and Carlsborg Area, Clallam County, December 2000-September 2002. Washington State Department of Ecology Environmental Assessment Program, Olympia, Washington. 30 pgs.
- Soule, Ann. 2005. Monitoring for Stormwater Contaminants in the Shallow Aquifer near Priest Road, Clallam County, WA. 9 pgs. plus figures and appendices.
- Soule, Ann. 2009. "Groundwater Quality Monitoring in the Shallow Aquifer near Sequim, Clallam County, WA: Phase I." Clallam County Environmental Health Services, for Clallam County Marine Resources Committee. 9 pgs. plus figures, tables, and appendix.
- Soule, Ann. 2010. Quality Assurance Project Plan for Monitoring Stormwater Contaminants in the Shallow Aquifer Near Sequim, Clallam County, WA. 24 pgs.
- Stallman, R.W. 1971 (reprinted in 1976 and 1983). Techniques of Water-Resources Investigations of the USGS, Chapter B1: Aquifer-Test Design, Observation and Data Analysis. 26 pgs.
- Thomas, B.E., L.A. Goodman, and T.D. Olsen. 1999. Hydrogeologic assessment of the Sequim-Dungeness Area, Clallam County, Washington. U.S. Geological Survey, Water-Resources Investigations Report 99-4048, 165 p.
- Washington State Department of Ecology. 1996. Implementation Guidance for the Ground Water Quality Standards. Publication no. 96-02. 135 pgs.
- Weiss, P.T., G. LeFevre, and J. S. Gulliver. 2008. Contamination of Soil and Groundwater Due to Stormwater Infiltration Practices: A Literature Review. Minnesota Pollution Control Agency, St. Paul, MN. 38 pgs.
- Woodruff, Dana and Valerie Cullinen, Jill Brandenberger. September 2009. "Effectiveness Monitoring of FC Bacteria and Nutrients in the Dungeness Watershed, Washington." Battelle Pacific Northwest Division, prepared for the Jamestown S'Klallam Tribe. 67 pgs. plus appendix.

#

APPENDIX A. Study Well Construction and Water Level Information, MRC Groundwater Quality Project, Fall 2010

	31N/04W-36L71	31N/04W-25R71	31N/04W-25R01	31N/03W-31N72	31N/03W-31E03	31N/03W-31D01	31N/03W-31B71	31N/03W-30Q71	31N/03W-30N01	30N/04W-24P80	30N/04W-24G02	30N/04W-13K14	30N/04W-12K01	30N/03W-20E01	30N/03W-20C02	30N/03W-18R71	30N/03W-18Q91	30N/03W-18E06	30N/03W-17M01	30N/03W-17D78	30N/03W-07Q03	30N/03W-07P03	30N/03W-06R02	30N/03W-06M01	30N/03W-05R01	30N/03W-05H02	30N/03W-04M01	Well Location ID
	AEJ955	AGP270		ABQ739	BBB083	BBB088	ACB283	AFA398	BBB082	BBB084	ACA651	ввво87	ACA782	BBB085	BBB078	BBN274	BBB076	ACA514	ACA515	BBB073	ACA539	ACA599	BBB089	ACA657	AAB744	AAB821	BBB086	Tag_Number
	60817	59263	58315	60472	57181	277535	60498	249011	60085	56910	56953	59592	57859	52872	48356	not yet assigned	275961	no log found	50051	44624	46526	51133	43897	44864	277214	43905	47553	Ecology Database Log_ID
	32.4	14.0	wellhead not found	10.5	22.0	16.0	10.0	9.0	14.0	307.2	237.0	160.0	108.2	173.0	140.0	162.0	160.2	150.0	123.8	108.3	134.0	110.0	63.6	123.3	24.3	15.6	24.2	Elevation (feet above sea level)
	2/26/1999	1/31/1986	9/10/1975	8/12/1996	6/24/1985	4/23/1976	7/16/1998	10/25/1999	3/13/1975	2/2/1992	12/5/1975	5/14/1990	11/9/1977	10/11/1977	5/8/1971	1/4/2010	9/1/1993	no log found	12/21/1976	8/22/1990	7/18/1991	5/9/1978	7/6/1979	3/7/1978	6/8/1965	6/23/1976	4/21/1980	Completion Date
	40	37	40	50	54	57	50	40	39	100	79	59	26	71	36	78	68	40	37	40	116	74	45	105	40	31	43	Depth (feet)
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	10	6	6	Diameter (inches)
	Screen	Screen	Screen	Open End	Screen	Perf/Slotted	Screen	Screen	Open End	Screen	Open End	Screen	Open End	Gravl Pack Scrn	Open End	Screen	Screen		Open End	Open End	Screen	Open End	Open End	Open End	Perf/Slotted	Open End	Perf/Slotted	Completion
	35	32	36	49	49	55	44	36	39	95	79	56	26	66	36	73	63		37	40	111	74	45	105	20	31	26	Open_Start (feet depth)
	40	37	40	49	54	57	50	40	39	100	79	59	26	71	36	78	66		37	40	116	90	45	105	38	31	35	Open_Stop (feet depth)
MP = Measuring Point SWL = Static Water Level ATC = At Time of Constru	1.8	0.7	0		0.7	0.6	1.2	0	0	1.5	0.8	0.9	0.5	0.8	0.7	1.7	0	0.6	0.5	1.3	0.9	1.1	0	0.8	0.5	0.9	0	MP Height (feet)
MP = Measuring Point SWL = Static Water Level ATC = At Time of Construction	1	ъ	ъ	3.75	3.5	7	4	4	4	47	55	23	6	26	9.5	44	31.5		10	15	57	19	25	83	6	ъ	6	SWL ATC
tion	2.8	5.7		4.0	4.1	6.9	4.2			61.9	66.6	27.1	10.5	55.8	30.4	45.2		26.8	24.4	22.5	59.1	21.4			8.8	6.5		SWL Fall 2010

APPENDIX B. Water Quality Results, MRC Groundwater Quality Project, Fall 2010

31N/04W-25R71	31N/04W-25R01	31N/03W-31N72	31N/03W-31E03	31N/03W-31D01	31N/03W-31B71	31N/03W-30Q71	31N/03W-30N01	30N/04W-24P80	30N/04W-24G02	30N/04W-13K14	30N/04W-12K01	30N/03W-20E01	30N/03W-20C02	30N/03W-18R71	30N/03W-18Q91	30N/03W-18E06	30N/03W-17M01	30N/03W-17D78	30N/03W-07Q03	30N/03W-07P03	30N/03W-06R02	30N/03W-06M01	30N/03W-05H02	30N/03W-04M01	Well ID						
10/7/2010	12/8/2010	10/13/2010	11/4/2010	10/26/2010	10/7/2010	10/11/2010	10/11/2010	11/4/2010	11/18/2010	12/2/2010	10/28/2010	11/18/2010	11/18/2010	12/3/2010	11/4/2010	10/28/2010	11/16/2010	11/16/2010	12/3/2010	10/14/2010	10/13/2010	12/2/2010	10/14/2010	12/2/2010	Date		Method:				
10.7	9.7	11.1	9.8	10.3	10.7	10.8	11	10.9	11.1	9.9	10.9	12.7	11.9	11.8	11.1	11.8	11.5	11.6	10.8	11.7	10.4	10.1	10.7	8.3	degrees C		in Field	YSI 85	icilibeiataie	Tomporature	
7.79	7.68	7.98	7.21	7.44	8.45	8.26	7.76	7.88	7.71	7.88	6.84	7.62	7.75	7.59	7.76	7.79	7.53	7.58	7.3	7.77	6.8	7.39	6.94	7.07			in Field	YSI 60	-	Ē	
173.4	186.4	196.7	183.8	212.2	411.1	409.2	200.7	287.2	334.6	231.3	209.4	501	349.5	440	329.9	335.6	436.3	423	261	341.3	240.7	377.4	371.9	346.2	uS/cm@25C		in Field	YSI 85	Conductance	Specific	AME
1.45	2.43	3.37	2.65	1.39	2.32	2.91	2.53	9.2	7.43	5.07	7.51	8.7	8.63	6.68	8.26	8.09	7.44	7.98	5.84	4.92	7.6	5.89	5.98	4.23	mg/L		in Field	YSI 85	Oxygen	Dissolved	SIENT MON
0.06	0.15	0.06	0.25	0.1	0.07	0.08	0.11	1.13	2.77	0.28	0.97	6.28	3.89	4.35	3.7	4.26	7.53	6.29	1.03	5.08	0.7	0.85	0.96	1.05	mg/L	measurement) EPA353.3	(original	Chemetrics	Nitrate-Nitrite	Nitrogen as	AMBIENT MONITORING PARAMETERS
C	U	U	U	U	U	C	C			U	U								U			C				Limit?	Detection	Below			NETERS
0.8	0.92	0.8	1.04	0.85	0.81	0.83	0.86	2.16	4.25	1.08	1.96	8.73	5.68	6.27	5.44	6.15	10.32	8.74	2.04	7.2	1.62	1.81	1.95	2.06	mg/L	estimate)	(corrected	Chemetrics	Nitrate-Nitrite	Nitrogen as	
									4.5	0.67		8.63					10.6	8.36				2.1		2.13	mg/L	SM4500NO3D	Health Lab	Clallam Co Env	Nitrate	Nitrogen as	
0.005	0.042	<.005		<.005	0.515												<.005							0.027	mg/L	EPA350.1	AMTEST		Ammonia	Nitrogen as	
<2.5	<2.5	<2.5	<2.5	4.96	32.38	38.04	<2.5	<2.5			<2.5			8.9		5.89	7.83		4.5	7.68	2.64		11.04	6.85	mg/L	SM4500CL-E	Chemetrics	<u>)</u>	Cilcilate	Chlorida	

METALS	& MINERALS	EPA 200.7 All sam	pled on 11/16-18/202	11 and analyzed by A	AM Test
Well ID:	30N/03W-17M01	30N/03W-20C02	30N/03W-20E01	30N/04W-24G02	
Parameter	Result (mg/L)	Result (mg/L)	Result (mg/L)	Result (mg/L)	Detection Limit
Aluminum	U	Ü	U	Ŭ	0.01
Antimony	U	U	U	U	0.01
Arsenic	U	U	U	U	0.01
Barium	0.01	0.0086	0.0124	0.0044	0.0005
Beryllium	U	U	U	U	0.0005
Boron	U	U	U	U	0.05
Cadmium	U	U	U	U	0.0005
Calcium	66	54	78	50	0.05
Chromium	U	U	U	U	0.001
Cobalt	U	U	U	U	0.001
Copper	0.003	0.002	0.004	0.005	0.001
Iron	U	0.013	0.055	0.045	0.005
Lead	U	U	U	U	0.01
Lithium	U	U	U	U	0.005
Magnesium	12	10	14	10	0.05
Manganese	0.0008	0.0009	0.0015	0.0016	0.0005
Mercury	U	U	U	U	0.01
Molybdenum	U	U	0.006	0.007	0.005
Nickel	U	U	U	U	0.005
Phosphorus	U	U	U	U	0.01
Potassium	1.1	0.69	0.97	0.82	0.1
Selenium	U	U	U	U	0.01
Silicon	8.7	7.8	8.5	7.6	0.05
Silver	U	U	U	U	0.01
Sodium	7.6	5.8	7.8	5.3	0.05
Strontium	0.339	0.2	0.27	0.26	0.0005
Sulfur	5.4	3.6	5.4	3.9	0.05
Thallium	U	U	U	U	0.01
Tin	0.01	0.012	0.008	0.012	0.005
Titanium	U	U	U	U	0.001
Vanadium	U	0.006	0.006	U	0.005
Yttrium	U	U	U	U	0.0005
Zinc	0.006	0.004	0.027	0.011	0.001

PESTICID	ES & PCBs EPA 60	08 All sampled o	n 11/16/2011 and ar	nalyzed at AM Test	
Well ID:	30N/03W-17D78	30N/03W-20C02	30N/03W-20E01	30N/04W-24G02	
					Detection
Parameter	Result (ug/L)	Result (ug/L)	Result (ug/L)	Result (ug/L)	Limit
Aldrin					0.003
Alpha BHC					0.003
Beta-BHC					0.003
Chlordane					0.01
Delta-BHC					0.003
Dieldrin					0.003
Endosulfan I					0.003
Endosulfan II					0.003
Endosulfan Sulfate					0.003
Endrin					0.003
Endrin Aldehyde					0.003
Heptachlor					0.003
Heptachlor Epoxide	_	II Relow Metho	d Detection Limit	+	0.003
Lindane	,	III DCIOW WICLIO	a Detection Linns		0.003
Methoxychlor					0.003
PCB-1016					0.05
PCB-1221					0.05
PCB-1232					0.05
PCB-1242					0.05
PCB-1248					0.05
PCB-1254					0.05
PCB-1260					0.05
pp-DDD					0.003
pp-DDE					0.003
pp-DDT					0.003
Toxaphene					0.025

PETROLEU	M HYDRO	CARBONS NW	-TPH HCID A	ll sampled on 11/16-18	/2011 and analyzed a	at AM Test
	Well ID:	30N/03W-17M01	30N/03W-20C	02 30N/03W-20E01	30N/04W-24G02	
						Detection
Parameter		Result (ug/L)	Result (ug/L) Result (ug/L)	Result (ug/L)	Limit
Diesel		U	U	U	U	100
Gasoline		140	620	140	360	30
Oil		U	U	U	U	200

APPENDIX C. Data Quality Assessment, MRC Groundwater Quality Project, Fall 2010

A. Check	Standards												
	method	MQO	% Recovery	analyte	NOTE								
			min / max										
NitratesLa					Within M	QO							
SM	4500-NO3-D	90-110%	101-104%	Nitrate									
Nitrato-Nitri	teField teste	d (Chamatr	ice)		Within M	00							
viiiaie-iviiii	EPA 353.3	85-115%		Nitrate-Nitrit		QU							
	LI A 333.3	03-11370	33.0-10370	I VILLAGO-I VILLII									
ChlorideFi	eld tested (Cl	nemetrics)			Check sta	andard not te	sted						
	SM 4500-CI-E		not known	Chloride		k of standar							
					Chloride	results cons	sidered estimates on	ly					
Metals and	Minerals				Within M	QO							
	EPA 200.7	85-115%	94.5	Vanadium									
			110	Silicon, Silve	er								
Pesticides-F		05 44501	07.5	Dalla DUG	Within M	QO							
	EPA 608	85-115%	87.5	Delta-BHC	DDD D	DT Endrin 1	Idobydo		-		+		
			105	Dielarin, pp-	טטט, pp-DI	DT, Endrin A	iueriyae				+		
Ammonia N	litrogen				Within M	00					+		
a IV	EPA 350.1	90-110%	97.4-104%	Ammonia	- # 1C11111 IVI						+		
	2. 7. 000.1	30 . 10/0	5 10-70										
B. Split-D	uplicates												
-	присшес												
Nitrate split	-dupe lab san	nples LAE	results (MQC	O = 20%)									
	non-neg Diff	x200	C1 + C2	RPD	NOTE	non-	neg Diff squared						
10.6	0.1	20	21.10	0.95	All are w	ithin MQO	0.010	standard	deviation from	these pai	rs:		
10.5								s(p) =	sqrt [sum of	f (non-neg	diff)squared	/ 2*number of	pairs]
8.36	0.51	102	17.23	5.92			0.260		0.274 / 6		0.0457		
8.87	0.51	102	17.25	3.32			0.200		sqrt [0.457]		0.0437		
8.63	0.06	12	17.32	0.69			0.004		0.214				
8.69						sum	0.274	%RSD =	100*[0.214 /	mean]	95.8		
	0.223	mean									Within DC	30	
Alituata amiit	-dupe from gi		FIEL D/CUE	METRICS ***	aulta (MOO	200()							
	non-neg Diff	x200	FIELD/CHE C1 + C2	RPD	NOTE		neg Diff squared						
7.2	0.66	132	15.06	8.76		rithin MQO	0.436		-		+		
7.86	0.00	132	13.00	0.70	An are W	Tariff Wild	0.700						
6.62	0.66	132	12.58	10.49			0.436						
5.96													
3.93	0.09	18	7.77	2.32			0.008	standard	deviation from	these pai	rs:		
3.84								s(p) =				/ 2*number of	pairs]
6.03	0.5	100	12.56	7.96			0.250		1.448 / 14	=	0.103		
6.53	0.5	100	12.50	7.30			0.230		sqrt [0.103]		0.103		
4.99	0.17	34	10.15	3.35			0.029		0.32				
5.16													
	0.4	80	8.52	9.39			0.160	%RSD =	100*[0.32 /	mean]	78.9		
4.06											NOT with	in DQO	
4.06 4.46													
4.46	0.36	72	7 40	0.72			0.130						
	0.36	72	7.40	9.73		sum	0.130 1.448				_		

No DED			TD100 1		1d 1 4 B	l: #100	000()									
Nitrate REP		non-neg Diff	TRICS result of x200	C1 + C2	RPD	NOTE	= 20%)	non-	neg Diff sqı	ıarad						
Lab		1.74	348	14.98	23.23		n the MQO	11011	3.028		standard o	deviation from	n these pai	rs:		
Field			0.10									sqrt [sum			d / 2*numb	er of pairs]
Lab	10.6	2.74	548	18.46	29.69	NOT with	n the MQO		7.508			19.105 / 10		1.9105		
Field		2.74	340	10.40	29.09	NOT WITH	II tile WQO		7.506			sqrt [1.910		1.9105		
													oj.			
Lab		2.1	420	15.16	27.70	NOT withi	n the MQO		4.410			1.382				
Field	6.53															
Lab	4.5	1.73	346	7.27	47.59	NOT withi	n the MQO		2.993		%RSD =	100*[1.382	/ mean]	73.6		
Field	2.77													NOT withi	n DQO	
Lab	2.1	1.1	220	3.10	70.97	Results cle	ose to detection	on limit								
Field		(actually <1.1					be used to de		RPD							
l ah	2.12			2.40	67.00	NOTishi	n the MOO		1.100							
Lab Field		1.08	216	3.18	67.92	NOI WITH	n the MQO		1.166							
Lab		na					ose to detectio									
Field	<1.13					should not	be used to de									
		1.878	mean					sum	19.105							
Chloride - E	IEI D/CHEME	TRICS regula	ts (MQO = 20%	7												
	non-neg Diff		C1 + C2	RPD	NOTE	non	neg Diff squar	ed								
7.83	0.9	180	14.76	12.20	within MO		0.810		standard o	eviation from	these pain	s:				
6.93										sqrt [sum of			2*number	of pairs]		
11.04	0.08	16	22.00	0.73	within MO	20	0.006			0.831 / 6		0.1385				
10.96	0.06	10	22.00	0.73	WILIIII WI	4 0	0.000			sqrt [0.139]		0.1303				
8.9	0.12	24	17.92	1.34	within MO		0.014			0.372						
9.02	0.00=	maa-				sum	0.831		0/DCD	400*50 070	ma1	404 -				
	0.367	mean							%RSD =	100*[0.372 /	meanj	101.5	\ <u>\</u>			
												Within DC	ĮU			
Ammonia -	I ΔR results	(MQO = 20%)														
	non-neg Diff		C1 + C2	RPD	NOTE											
0.005	0.005	1	0.005	200.00		lose to dete	ction limit									
0.000	(not detected	d)					determine RF	PD								
			_AB results (M													
	non-neg Diff	x200	C1 + C2	RPD	NOTE		-neg Diff squar	ed								
0.033	0.007	1.4	0.06	23.73	NOT with	in MQO	0.000049			eviation from						
0.026									s(p) =	sqrt [sum of	(non-neg o	liff)squared /	2*number	of pairs]		
0.022	0.004	0.8	0.05	16.67	within the	· MOO	0.000016			0.000074 / 6		0.000012				
0.022	0.004	0.0	0.05	10.07	within the	BIVIQU	0.000016			sqrt [0.0000		0.000012				
0.020										5411 [0.0000	12]					
0.027	0.003	0.6	0.06	10.53	within the	e MQO	0.000009			0.003512						
0.03						sum										
	0.004667	mean							%RSD =	100*[0.0035	12 / mean]	75.3				
< 0.005	0	0	0.00	na	Results ci	lose to dete	ction limit					NOT withi	n DQO			
<0.005					should no	t be used to	determine RF	PD								
		QO establish		DDD	Amaluta											
3.6	non-neg Diff 0.1	x200 20	C1 + C2 7.30	RPD 2.74	Analyte Sulfur											
3.7	0.1	20	1.50	2.14	Juliui											
10	0.2	40	19.80	2.02	Magnesiu	m										
9.8																
54	1	200	107.00	1.87	Calcium											
53																
0.2	0.004	0.8	0.40	2.02	Strontium											
0.196	3.004	0.0	55		20											
		O establishe														
	non-neg Diff	x200	C1 + C2	RPD												
(all non-dete	ct)															
Undrasa	n ID (no MO:	O ootsbiist	41													
	n ID (no MQ) non-neg Diff	O established x200	d) C1 + C2	RPD												
Dupe pairs	HUH-HEG DIT	X2UU	01+02	KPU												
Total colifor	rm bacteria	(no MQO esta	ablished)													
	non-neg Diff		C1 + C2	RPD			%RSD = 100									
0	0						Within DQO									
0																

C. Matrix Spikes					Matrix S	pike Du	plicates			
	method	MQO	% Recovery	analyte	MQO	RPD	analyte	NOTE		
NitratesLa	b-tested		min / max			max		No matrix	spike data	
SM	4500-NO3-D	80-120%	N/A	Nitrate	20%		Nitrate	available from EH Lab		ь
				Nitrate						
Metals and	Minerals							Within Mo	20	
	EPA 200.7	70-130%	85.6	Beryllium	20%	6.1	Potassium			
			122	Potassium						
Pesticides-F	PCBs							Within Mo	3 0	
	EPA 608	20-180%	52	PCB-1260	50%	21	Delta-BHC			
			125	pp-DDT						
Ammonia N	litrogen							Results cl	ose to dete	ction limit
	EPA 350.1	80-120%	108-116%	Ammonia	20%	N/A*	Ammonia	should not	be used fo	or QA
					*typically s	spike dupli	cates are			
					not conduc	cted unles	s analyte			
					is commo	nly not det	ected			
D. Blanks										
		ed in nondete	ects for all para	meters and a	all methods	except on	A.			
			tht at the methor			CACOPT OIL	<u>, </u>			