San Juan County Underwater Videographic and Hydroacoustic Eelgrass Survey Methodology

Prepared by James G. Norris and Ian E. Fraser

06/23/2004

This report was funded in part through a cooperative agreement with the National Oceanic and Atmospheric Administration.

The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies.

APPENDIX A

San Juan County Underwater Videographic and Hydroacoustic Eelgrass Survey Methodology

Prepared by James G. Norris and Ian E. Fraser

Introduction

The Friends of the San Juans, with the assistance of project partners (San Juan County Marine Resources Committee, Washington State Department of Natural Resources, University of Washington, and Washington State Department of Fish and Wildife), developed a comprehensive multi-phased project to assess and evaluate nearshore marine habitat, including eelgrass (*Zostera marina*) and forage fish (surf smelt *Hypomesus pretiosus pretiosus*, Pacific sandlance *Ammodytes hexapterus*, and Pacific herring *Clupea harengus pallasi*), throughout the entire county. This Appendix discusses the underwater videographic and hydroacoustic eelgrass assessment methods.

No comprehensive eelgrass survey for San Juan County has ever been conducted. Thom and Hallum (1991) reviewed Puget Sound eelgrass surveys prior to 1990. These included hydrographic charts dating to 1855, the Coastal Zone Atlas prepared from aerial photographs taken in 1973-74, and Washington State Department of Fish and Wildlife (WDFW) herring spawn surveys since 1975. They noted that these early surveys underrepresented eelgrass distribution in the San Juan Islands because eelgrass is found predominantly in the subtidal zone.

In selecting a method for surveying San Juan County eelgrass, we considered all currently available methods. Sabol et al. (2002) provide an excellent review of techniques used to characterize and monitor submerged aquatic vegetation (SAV), including eelgrass. They divide the methods into three groups: (1) physical (manual); (2) off-water-remote; and (3) on-water remote. Physical methods include direct observation and measurement by divers. There have been numerous site specific eelgrass surveys of this type in San Juan County related to shoreline modification projects, such as dock and bulkhead construction. WDFW has responsibility for issuing Hydraulic Project Approvals for such projects, and provides recommended guidelines for eelgrass/macro algae habitat surveys at four levels: (1) preliminary surveys to determine eelgrass presence/absence; (2) higher resolution intermediate surveys are required if eelgrass is present; (3) intensive surveys must be conducted if the eelgrass bed is a known herring spawning site; and (4) monitoring surveys must be conducted if mitigation was required. Preliminary surveys may be conducted at any time of the year; all other surveys must be conducted between June 1 and September 30. These surveys are usually conducted by divers with transects berthed 20 to 40 ft apart. These methods provide the greatest level of detail, but they are too labor intensive to be considered for surveying the entire shoreline of San Juan County.

Off-water remote sensing methods interpret aerial photography (still or video) or satellite imagery by either a human interpreter or by a computer algorithm. In 1995 the Washington State Department of Natural Resources (DNR) used aerial video photography from a helicopter to survey the entire shoreline of Washington State, including San Juan County. The results, known as the ShoreZone survey, were presented as linear shoreline segments having no, patchy, or continuous eelgrass. A limitation of the DNR ShoreZone survey was its inability to adequately identify subtidal resources. In general, off-water remote sensing methods work well when the water is clear and calm and the vegetation is easily identifiable and does not extend too deep. For example, vertical true-color aerial photography has been used successfully to monitor eelgrass in Padilla Bay where conditions are near ideal (Bulthuis et al. 2003). Off-water

remote sensing methods are inappropriate for San Juan County because eelgrass can be difficult to differentiate from some macro algae and can grow to depths of –30 ft Mean Lower Low Water (MLLW), which is too deep to be seen from an aerial platform.

On-water remote sensing methods interpret georeferenced underwater videographic or hydroacoustic images. Norris et al. (1997) describe an underwater videographic technique for estimating the basal area coverage of submerged aquatic vegetation. Their sampling design is statistically motivated and involves randomly placed transects through a study area. Thus, their methods are not specifically designed to create a detailed map of the aerial extent of eelgrass. Sabol et al. (2002) evaluated the effectiveness of an unsupervised interpretation (i.e., computer interpretation without human intervention) of signals from a BioSonics DT4000 digital echosounder. Although they recommended the technique, they noted that it could not identify sparse or short vegetation and it could not predict plant biomass from echo integration. They did not attempt to differentiate species of SAV. Norris et al. (2003) evaluated the effectiveness of both an unsupervised and a supervised classification of signals from a BioSonics system collected from 10 locations in Puget Sound. They found that the unsupervised classification method was unusable as an eelgrass detection tool because it could not reliably distinguish between eelgrass and macroalgae. However, the supervised classification method (i.e., echograms interpreted by a scientist instead of a computer) was acceptable at seven of the ten sites considered.

In 2000 the DNR initiated the Submerged Vegetation Monitoring Project (SVMP) to monitor eelgrass resources throughout Puget Sound and its bathymetric range (Berry et al. 2003). The SVMP approach is to divide Puget Sound into discrete sampling units, conduct detailed sampling (line transects) to estimate critical parameters (e.g., aerial extent, average maximum depth) at a few randomly selected units each year, and extrapolate the results to all of Puget Sound. DNR selected underwater videographic methods to conduct line transects for the SVMP because those methods appeared to be more cost effective than diver transects and more accurate (in terms of species identification and positioning) than other remote sensing methods, such as aerial photography and hydroacoustics.

The DNR SVMP stratifies the Puget Sound shoreline and associated eelgrass resources into two types: "Flats" and "Fringe." The same field sampling methods are used at each type of site, but the statistics for parameter estimation are slightly different. Flats are broad areas in which the lengths of the shoreline and the -20 ft isobath are of much different length. There are 67 sites of this type in Puget Sound, including 18 in San Juan County. Fringe sites are defined to be 1,000 meters of shoreline in which the shoreline and the -20 ft isobath lengths are approximately equal. These sites are characterized by a relatively narrow band of eelgrass along a well defined shoreline. There are 2,188 of these sites throughout Puget Sound, of which 516 are located in San Juan County.

For the San Juan County eelgrass survey we decided that a combination of underwater videography and single beam hydroacoustics (BioSonics system) would be the most cost-effective method. Underwater videography would be our primary sampling tool because it provides the most accurate species identification. Hydroacoustics would be used in areas where the camera could not be towed (e.g., rocky, jagged shoreline), and a portable drop camera would be used to validate our interpretation of any questionable acoustic images.

We also concluded that estimating all of the DNR SVMP parameters for the entire shoreline of San Juan County (18 flats sites and 516 fringe sites) would require too much time and money. Therefore, we decided to estimate the DNR SVMP parameters only for the flats sites. For the fringe sites, our goal was to delineate only the deepwater edge of any eelgrass beds and to estimate the mean maximum eelgrass depth for each site. These fringe site parameters could be estimated using zig-zag transects along the deepwater edge of any eelgrass beds. A single zig-zag transect along the entire site is more time efficient than a series of transects perpendicular to the shoreline because the camera is continuously deployed along the entire length of a site (i.e., there is no setup time between transects). And, a critical advantage of surveying only along the deepwater edge is that surveying can be conducted during any tide stage, thus increasing the number of working hours each day.

The specific goals of the survey were:

- For each flats site, draw polygons to delineate all eelgrass beds, estimate basal area coverage, patchiness index, and mean minimum and maximum eelgrass depths.
- For each fringe site, draw a line delineating the deepwater edge of eelgrass beds and estimate the mean maximum eelgrass depth.
- Measure once each day between 10 am and 2 pm water quality parameters (temperature, salinity, pH, dissolved oxygen, and photosynthetically available radiation).

Although there was a strong desire to conduct the entire survey during the period June 1 to September 30, scheduling conflicts prevented us from doing so. After consultation with Brian Williams (WDFW habitat biologist) and Dr. Sandy Wyllie-Echeverria (University of Washington) we decided that any sampling conducted outside the June 1 to September 30 window should be at regions known to have eelgrass. If we were to survey an area outside the June 1 to September 30 window and find no eelgrass, one could argue that the area might have had eelgrass later during the prime growing season.

Methods

Personnel

We surveyed on 61 days between April 30 and September 25, 2003. Table 1 lists the field personnel during each day of the survey.

Field personnel list for the months of April and May.

Date	Vessel Master	Deckhand/Scientist	Date	Vessel Master	Deckhand/Scientist
4/30/03	Jim Norris	lan Fraser	7/25/03	Jim Norris	Anita Fraser
5/1/03	Brad Jensen	lan Fraser	7/26/03	Jim Norris	Anita Fraser
5/2/03	Brad Jensen	lan Fraser	7/27/03	Jim Norris	Anita Fraser
5/5/03	Brad Jensen	lan Fraser	7/28/03	Jim Norris	Anita Fraser
5/6/03	Brad Jensen	lan Fraser	7/31/03	Jim Norris	Anita Fraser
5/7/03	Brad Jensen	lan Fraser	8/1/03	Jim Norris	Anita Fraser
5/8/03	Brad Jensen	lan Fraser	8/3/03	Jim Norris	Anita Fraser
5/19/03	Brad Jensen	lan Fraser	8/6/03	Jim Norris	Anita Fraser
5/20/03	Brad Jensen	lan Fraser	8/7/03	Jim Norris	Anita Fraser
5/21/03	Brad Jensen	lan Fraser	8/8/03	Jim Norris	Anita Fraser
5/22/03	Lou Schwartz	lan Fraser	8/11/03	Jim Norris	(none)
5/23/03	Lou Schwartz	lan Fraser	8/14/03	Jim Norris	Anita Fraser
5/26/03	Jim Norris	lan Fraser	8/15/03	Jim Norris	Anita Fraser
5/27/03	Brad Jensen	lan Fraser	8/17/03	Jim Norris	Anita Fraser
5/28/03	Brad Jensen	lan Fraser	8/19/03	Jim Norris	(none)
5/29/03	Brad Jensen	lan Fraser	8/20/03	Jim Norris	(none)
5/30/03	Brad Jensen	lan Fraser	8/21/03	Jim Norris	lan Fraser
6/2/03	Lou Schwartz	lan Fraser	8/22/03	Jim Norris	Ian Fraser
6/3/03	Lou Schwartz	lan Fraser	8/23/03	Jim Norris	Anita Fraser
6/4/03	Brad Jensen	lan Fraser	8/24/03	Jim Norris	Anita Fraser
6/5/03	Brad Jensen	lan Fraser	9/22/03	Brad Jensen	Jim Norris
6/6/03	Brad Jensen	lan Fraser	9/23/03	Brad Jensen	Jim Norris
6/9/03	Lou Schwartz	Jim Norris	9/24/03	Brad Jensen	Jim Norris
6/10/03	Lou Schwartz	Jim Norris	9/25/03	Brad Jensen	Jim Norris
6/11/03	Brad Jensen	Jim Norris			
6/12/03	Brad Jensen	Jim Norris			
6/13/03	Brad Jensen	Jim Norris			
6/16/03	Lou Schwartz	lan Fraser			
6/17/03	Lou Schwartz	lan Fraser			
6/18/03	Jim Norris	lan Fraser			
6/19/03	Jim Norris	lan Fraser			
6/23/03	Lou Schwartz	lan Fraser			
6/24/03	Lou Schwartz	lan Fraser			
6/25/03	Lou Schwartz	lan Fraser			
	(am) Brad				
	Jensen (pm)				
6/26/03	Brad Jensen	lan Fraser			
6/27/03	Brad Jensen	lan Fraser			
6/28/03	Brad Jensen	lan Fraser			

Study Area

We defined the study area to be all of the potential eelgrass habitat in San Juan County. Results from the DNR SVMP indicated that potential eelgrass habitat includes the depth range of +3 ft to -30 ft MLLW. Thus, we included in our study area not only the immediate shoreline, but also shallow offshore shoals. To ensure that no surveying occurred outside the period June 1 through September 30 in areas without eelgrass, we subdivided the study area into two general regions based on the DNR ShoreZone survey: (1) areas with previously observed eelgrass; and (2) areas where eelgrass has not been previously observed (Fig. 1).

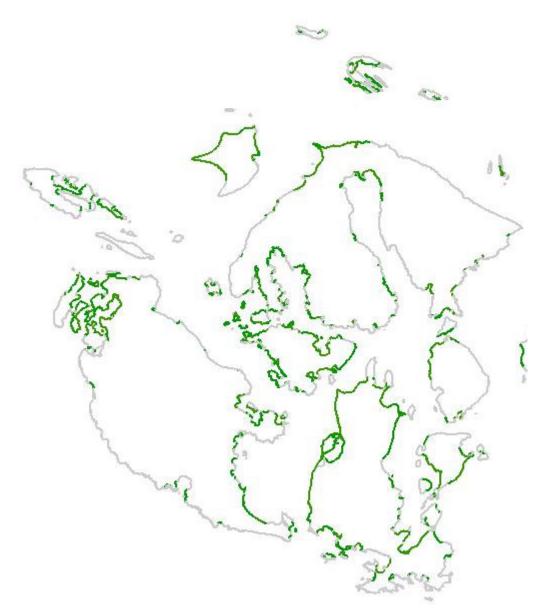


Figure 1. Areas in San Juan County where continuous or patchy eelgrass (both shown in green) was reported by the Washington State Department of Natural Resources ShoreZone Survey (Nearshore Habitat Program 2001).

Survey Design

We used the DNR SVMP flats and fringe sites to partition the study area into discrete units and to assign unique identification numbers. Three vessels were used during the survey. The 36-ft *R/V Brendan D II* was used prior to July 1 and during late September in areas without significant navigation hazards (Fig. 2). An aluminum work skiff was used during July and August in the hazardous areas (Fig. 3). The 32-ft *R/V Shani II* served as a living platform and office during the skiff survey. We did not survey the sites in consecutive order around the county. Instead, the vessel(s) used and the units sampled on a given day were determined by considering a number of factors: eelgrass presence (from the ShoreZone survey), wind, currents, tide height, and navigation hazards. The table at the end of this appendix lists the sites visited each sampling day.

Prior to June 1, we selected only those units for which the DNR ShoreZone survey indicated eelgrass presence. On windy days, we selected units on lee shores. Currents at some sites and times were too strong to safely and effectively deploy the underwater camera. Sampling at those sites was postponed until slack water. For fringe sites, tide height was generally not a factor because we were only surveying the deepwater edge of the eelgrass beds, and most eelgrass extended well below mean lower low water (MLLW; the vertical datum used throughout this report). But for flats sites, surveying was only conducted during times when tide height was above +5 ft so we could survey the shallow water edge of the eelgrass beds. Sites with dangerous navigation hazards (e.g., rocks, shoals) were surveyed in July and August with the aluminum work skiff.

The San Juan County eelgrass inventory was conducted using underwater videographic and acoustic methods consistent with those used by the DNR SVMP (Berry et al. 2003). Instead of collecting water quality data at every site, we only collected these data once each day between 1000 and 1400. These data included temperature, salinity, dissolved oxygen, pH, and photosynthetically available radiation (PAR). The following subsections describe the eelgrass sampling design within the two types of sites. Flats Sites

There are 18 flats sites in San Juan County (Fig. 4), of which we surveyed 15. We did not survey Picnic Cove, Hunter Bay, and Swifts Bay because they were sampled by the DNR SVMP in 2002 or 2003. We surveyed Prevost Harbor, Nelson Bay, Westcott Bay, Garrison Bay, Mitchell Bay, False Bay, Fisherman's Bay, Barlow Bay, Mud Bay, Shoal Bay, Blind Bay, Squaw Bay, Thatcher Bay, Shallow Bay, and Fossil Bay. At the request of Friends of the San Juans, we also surveyed the following sites as though they were flats sites: Open Bay, Reid Harbor, Salmon Bank, and East Sound.

At each of these sites we used straight-line underwater videographic transects in a grid pattern systematically placed throughout the site. We also used zig-zag and meandering transects to help delineate the edges of any eelgrass beds. During data analysis, only the straight-line transects were used to estimate parameters.

In cases where we were confident that the hydroacoustic system could accurately identify eelgrass, we did not use the underwater camera. Prevost Harbor, False Bay, and Shallow Bay were surveyed with the skiff, and thus we only used the hydroacoustic system to identify eelgrass at those sites. Table 2 summarizes the flats sites surveyed.

Figure 2. *R/V Brendan D II* used during April, May, June, and September.

Figure 3. Aluminum work skiff used during July and August.

Figure 4. Washington State Department of Natural Resources Submerged Vegetation Monitoring Project flats sites.

Table 1. Summary of San Juan County flats sites sampled during May through September 2003.

Date	Flats ID	Name	Primary Survey Type
5/7/03	67	Fossil Bay	Underwater videographic
5/21/03	53	Westcott Bay	Underwater videographic
5/22/03	54	Garrison Bay	Underwater videographic
5/27/03	59	Mud Bay	Underwater videographic
5/28/03	55	Mitchell Bay	Underwater videographic
5/28/03	52	Nelson Bay	Underwater videographic
5/29/03	63	Blind Bay	Underwater videographic
5/30/03	61	Shoal Bay	Underwater videographic
6/6/03	65	Thatcher Bay	Underwater videographic
6/12/03	57	Fisherman's Bay	Underwater videographic
6/13/03	58	Barlow Bay	Underwater videographic
8/15/03	51	Prevost Harbor	Hydroacoustic
8/17/03	56	False Bay	Hydroacoustic
8/23/03	66	Shallow Bay	Hydroacoustic

Fringe Sites

There are 516 fringe sites in San Juan County, of which 12 were surveyed by the DNR SVMP during 2000-2003 (Fig. 2). We did not survey those sites. There were eight sites that were extremely short (<50 m long), and we did not survey these sites independently. Instead, we included them with adjacent sites (Table 9). We also did not survey five sites that we felt were unlikely to have any eelgrass and which are located within the National Wildlife Refuge system: three sites around Peapod Rocks (sjs0515, sjs0516, sjs0517) and two sites around Colville Island (sjs0742, sjs0743).

Table 2. San Juan County fringe sites that were too short to sample independently.

ID	Name
sjs0298	Sucia Island
sjs0505	Ripple Island
sjs0512	Flattop Island
sjs0563	Cliff Island
sjs0681	Willow Island
sjs0688	Turn Island
sjs0694	James Island
sjs0741	Long Island

In most cases we used a single zig-zag transect along the entire site. To effectively sample small pocket beaches, we also used straightline transects perpendicular to the shoreline. Occasionally, we used meandering transects to survey areas around obstructions, such as docks or rocks.

At sites with extremely low eelgrass probability (due to steep cliffs, rocks, or kelp) we did not use the underwater camera. Instead, we used only the BioSonics echosounder to look for eelgrass. If the echosounder signal was difficult to interpret, we passed over the area a second time with the underwater camera deployed to validate our interpretation of the signal.

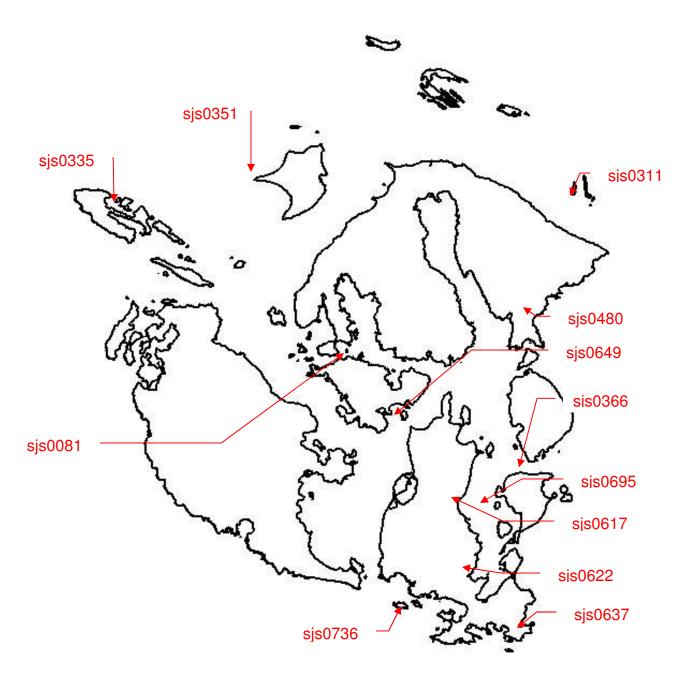


Figure 5. Fringe sites not surveyed because they were surveyed by the DNR SVMP during 2000 - 2003.

Brendan D II Survey Methods

Equipment

Table 4 lists the survey equipment used onboard the *R/V Brendan D II*. Position data were acquired using a Trimble Ag132 DGPS processor with the antenna located at the tip of the cargo boom used to deploy the camera. Differential corrections were received from the United States Coast Guard public DGPS network using the NAD 83 datum. Portable transducers mounted on both the starboard and port sides near the transom collected depth below transducer and bottom discrimination data. The American Pioneer and Garmin transducers were located on the starboard side and the BioSonics transducer was located on the port side. Underwater video images were obtained using an underwater camera mounted in a down-looking orientation on a heavy towfish. Two parallel red lasers mounted 10 cm apart created two red dots in the video images as a scaling reference. A 500 watt underwater light provided illumination when needed. The towfish was deployed directly off the stern of the vessel using the cargo boom and boom winch. The weight of the towfish kept the camera positioned directly beneath the DGPS antenna, thus ensuring that the position data accurately reflected the geographic location of the camera.

A laptop computer equipped with a video overlay controller and data logger software integrated DGPS data (date, time, latitude, longitude), user supplied transect information (transect number and site code), and the video signal. Video images were stored directly onto two VHS videotapes using two four head video cassette recorders and onto a Sony Digital8 videotape using a Sony DVR-TRV310 camcorder. Date, time, position, and transect information also were stored on a floppy disk at 1 s intervals. Television monitors located in both the pilothouse and the work deck assisted the helmsman and winch operator control the speed and vertical position of the towfish.

A real-time plotting system used a multiplexer to integrate National Marine Electronic Association 0132 standard sentences produced by the DPGS, the Garmin and American Pioneer depth sounders, and a user-controlled toggle switch to indicate eelgrass presence/absence. These data streams were forwarded to a laptop personal computer running a spreadsheet program with macro and plotting capabilities (Microsoft Excel 7.0). A red cursor plotted the current position of the vessel. When the UV camera was down and observing the seabed, a thin black line on the plotter traced the camera's position. As the vessel moved along the track line, the chief scientist watched the TV monitor and clicked the eelgrass toggle switch on or off each time eelgrass appeared or disappeared from view. When the eelgrass toggle was on, the track line pattern changed to a thick green line and the eelgrass positions were stored on a separate worksheet. The result was a real-time plot of the area sampled and where eelgrass was observed.

Table 3. Survey equipment used onboard the R/V Brendan D II during this survey.

Item	Manufacturer/Model	
Differential GPS	Trimble AgGPS 132 (sub-meter accuracy)	
Depth Sounders	Garmin Fishfinder 240 (200 KHz transducer) American Pioneer Fishscope V (160 KHz transducers) BioSonics 2400 T system with Submerged Aquatic Vegetation software	
Sea Surface Temperature	Garmin Fishfinder 240 (w/temperature sensor)	
Underwater Camera	Deep Sea Power & Light SeaCam 2000	
Lasers	Deep Sea Power & Light	
Underwater Light	Deep Sea Power & Light RiteLite (500 watt)	
Real-time Plotting Computer	Sony VAIO	
Data Backup System	Sony CD-ROM	
Color Printer	Hewlett-Packard HP DeskJet 842C	
Video Overlay Computer	Toshiba 1200 Laptop	
Video Overlay Controller	Discovery Bay Software	
VCR#1 (master tapes)	General Electric VG4043 VHS 4-Head	
VCR#2 (backup tapes)	Zenith TV/VCR Combo 4-Head	
Digital VideoTape Recorder	Sony DVC310 Digital8 Camcorder	

Vessel Operations

For flats sites, at the start of each straight-line transect, the vessel was backed close to the shoreline or dock and the camera was lowered to just above the bottom. Visual references were noted and the VCRs and data loggers were started. As the vessel moved along the transect the winch operator raised and lowered the camera towfish to follow the seabed contour. The field of view changed with the height above the bottom. The vessel speed was held as constant as possible (less than 1 m/sec). At the end of the transect, the VCRs were stopped, the camera was retrieved, and the vessel was moved to the next transect position. For meandering transects, the vessel was controlled from the aft control station. Once the camera was deployed, the vessel was maneuvered as close as possible to physical barriers, such as moored vessels, mooring lines, pilings, and piers.

For fringe sites we generally used a single zig-zag transects running the full length of the site (Fig. 6). Sites with extremely low eelgrass probability usually had navigation hazards, especially rocks. For these sites we used only the BioSonics hydroacoustic system and placed the deckhand on the bow as a lookout as we traveled as close as possible to the rocky shoreline. If the helmsman observed possible eelgrass on the BioSonics display, we cruised over the suspect area a second time with the underwater video camera deployed.

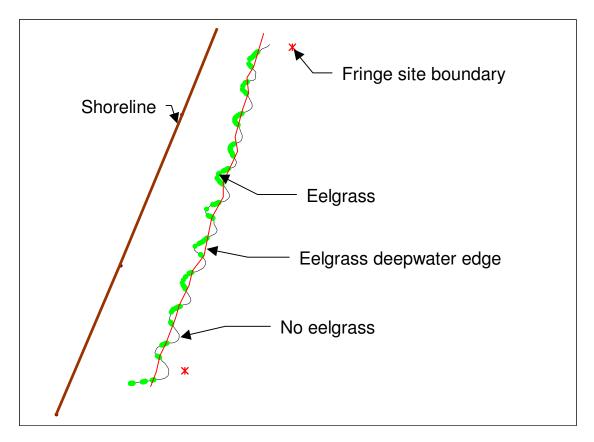


Figure 6. Sample zig-zag transect (site sjs0616).

Skiff Survey Methods

Equipment

Table 5 lists the equipment used on the aluminum work skiff. The skiff was a double ended flat bottom "bartender" design with a 40 horsepower outboard engine mounted in a well near the stern. The DGPS antenna was attached to the top of the davit used to deploy the underwater camera. An electric pot hauler with a 1.5 in spacer between the hauling sheaves served as a winch for lowering and retrieving the underwater camera. The SplashCam was attached to a small weighted towfish. The BioSonics transducer was mounted on a pole directly beneath the DGPS antenna. The video monitor and VCR were housed in a plywood box just aft of the steering station and forward of the engine. A towel with viewing cutout was placed over the front of the box. The real-time computer was placed on top of the plywood box and covered with a smaller removable plywood box. The BioSonics surface unit and computer were placed under the dash.

Vessel Operations

Vessel operations in the skiff were similar to those in the *Brendan D II*. The main difference is that the BioSonics system was used as the primary eelgrass identification tool. Whenever there was uncertainty, we lowered the SplashCam to validate eelgrass presence/absence.

Table 4. Survey equipment used onboard the aluminum work skiff during this survey.

Table 4. Survey equipment used onboard the aruninum work skin during this survey.					
Item	Manufacturer/Model				
Differential GPS	Trimble AgGPS 132 (sub-meter accuracy)				
Depth Sounders	BioSonics 2400 T system with Submerged Aquatic Vegetation software				
Underwater Camera	SplashCam (Ocean Engineering)				
Real-time Plotting Computer	MarsPal				
Video Overlay Controller	Ocean Engineering				
VCR	General Electric VG4043 VHS 4-Head				

Data Post-Processing

Underwater Video

Data stored on floppy disks were downloaded and organized into spreadsheet files including blank columns for "video code" and "eelgrass code." Videotapes were reviewed in the laboratory to assign video codes (0 = cannot view the seabed; 1 = seabed in view) and eelgrass codes (0 = eelgrass absent; 1 = eelgrass present) to each position record. Qualitative notes were made regarding the presence of other biota for each track. The resulting data were plotted in AutoCAD along with the shoreline and approximate structure locations. For flats sites, polygons were drawn around eelgrass observations to define the eelgrass bed outlines. For fringe sites, a single line was drawn connecting the deepwater edge observations.

Hydroacoustic Data

The Biosonics 2400 T system does not produce depth readings in real time. Instead, it records on a laptop computer all of the returning raw signals in separate files for each track. During post-processing, individual track files are combined into larger files and processed through EcoSAV software. The output is a text file with time, depth, and position data. These data are then merged with the tide correction data (see sub-section below) to give corrected depths.

On tracks used for estimating mean maximum eelgrass depth, the echosounder display for the track is replayed using the BioSonics Visual Analyzer program. At this point the operator has two displays of the seabed—the underwater video data and the echosounder data. Both pieces of information are used to determine which ping (and associated time stamp) in the echosounder recording represents the eelgrass maximum depth for a given track (or for a given zig or zag section of a track). The corrected depth for this time stamp is then read from the corrected depth file.

Tide Heights

Raw depths collected from the BioSonics echosounder measure the distance between the seabed and the transducer. To correct these depths to the MLLW vertical datum, three corrections were applied:

- 1. transducer offset (i.e., distance between the transducer and the surface);
- 2. predicted tidal height (i.e., predicted distance between the surface and MLLW);
- 3. tide prediction error (i.e., difference between the predicted and observed tidal height at a reference station).

Corrected depth equals depth below the transducer plus the transducer offset minus the predicted tidal height plus the tide prediction error. The transducer offsets were measured daily and immediately after taking on fuel. We used the computer program Tides and Currents Pro 3.0 (Nobletec Corporation) to get predicted tide heights (at 6 min intervals) for the tide prediction station closest to the survey site. When the survey site was located between tide prediction stations, the used the average of nearby prediction stations. Port Townsend (station ID 0995; 48 06.90 N 122 45.00 W) is the reference station for all San Juan county tide prediction stations. We computed tide prediction errors at the reference station by comparing the computer program predicted tide heights with actual observed tide heights published by the National Oceanic and Atmospheric Administration on their web site (http://www.co-ops.noaa.gov/data_res.html).

Data Analysis

We estimated the total basal area coverage of eelgrass at each flats site using methods described in Norris et al. (1997). We used AutoCAD to compute the total area of the eelgrass polygons (*A*). For each straight-line transect, we computed the length of the transect passing through the eelgrass polygon and the lengths associated with eelgrass. Once all transects were analyzed, the proportion of the polygon having eelgrass (*p*) was estimated by (Cochran 1977; eq. 3.31):

$$\hat{p} = \frac{\sum a_i}{\sum m_i}$$

where m_i = length (ft) of transect i passing through the polygon and a_i = length (ft) of transect i with eelgrass. An approximate estimated variance is (Cochran 1977; eq. 3.34):

$$v(\hat{p}) = \frac{1 - f}{n\overline{m}^2} \frac{\sum a_i^2 - 2p \sum a_i m_i + p^2 \sum m_i^2}{n - 1}$$

where n is the number of transects, f = n/N is the sampling fraction, and $\overline{m} = \sum m_i/n$ is the average length of the transects passing through the polygon. The estimated total number of square feet covered by eelgrass (\hat{E}) is given by:

$$\hat{E} = A \cdot \hat{p}$$

where *A* is the area of the eelgrass polygons.

Patchiness index was computed as the number of patch/gap transitions per 100 ft of straight-line transect length. A gap was defined to be a transect section at least 1 m long with no eelgrass.

Maximum and minimum eelgrass depths refer to the shallow- and deep-water boundaries of eelgrass growth. Consider a straight-line transect oriented perpendicular to the isobaths (i.e., running shallow to deep) and passing through an eelgrass bed. If one records at regular intervals along the transect the depths at which eelgrass is observed along this transect, there will be both a maximum and a minimum depth observation. If measurements are taken along many such transects, one will have a collection of maximum and minimum depth measurements. Our parameters of interest are the average of these collections of maximum and minimum depth measurements.

Water Quality Parameters

Water quality profiles were taken between 10:00 am and 2:00 pm on most days, usually while anchored for lunch. The exact time was determined by the chief scientist. If eelgrass was observed at the site, the profile was taken near the central deep-water edge of the eelgrass. If the depth was 3 m or less, measurements were taken every 0.5 m; if the depth was greater than 3 m, measurements were taken every 1.0 m. If no eelgrass was observed at the site, the water quality data were taken near the center of the site at a depth of approximately -20 ft MLLW. All measurements were taken with a HydroLab Data Sonde IV.

References

- Berry, H.D., A.T. Sewell, S. Wyllie-Echeverria, B.R. Reeves, T.F. Mumford, J.R. Skalski, R.C. Zimmerman, and J. Archer. 2003. Puget Sound Submerged Vegetation Monitoring Porject: 2000-2002 Monitoring Report. Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA. 60 pp. plus appendices.
- Bulthuis, D.A., S. Shull. 2003. Eelgrass distribution in Padilla Bay, Washington in 2000: gains and losses over a decade. Oral presentation at the 2003 annual meeting of the Pacific Estuarine Research Society, Vancouver, Canada.
- Cochran, W.G. 1977. Sampling techniques. John Wiley and Sons, Inc.
- Nearshore Habitat Program. 2001. The Washington State ShoreZone Inventory. Washington State Department of Natural Resources, Olympia, WA.
- Norris, J.G., S. Wyllie-Echeverria, T. Mumford, A. Bailey, and T. Turner. 1997. Estimating basal area coverage of subtidal seagrass beds using underwater videography. Aquatic Botany 58: 269–287.
- Norris, J.G., I.E. Fraser, H. Berry, A. Sewell, B. Reeves, and S. Wyllie-Echeverria. 2003. Comparison of acoustic and underwater videographic methods for mapping and monitoring eelgrass (*Zostera marina*). Poster presentation at the 2003 Biennial Conference of the Estuarine Research Federation, Seattle, WA.
- Sabol, B.M., R.E. Melton, Jr., R. Chamberlain, P. Doering, and K. Haunter. 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries.
- Thom, R. M., and L. Hallum. 1991. Long-term changes in the areal extent of tidal marshes, eelgrass meadows and kelp forests of Puget Sound. U.S. Environmental Protection Agency, Seattle, WA. EPA910-91-005. 55 pp.
- Woodruff, D., P. Farley, A. Borde, J. Southard, R. Thom, J. Norris, S. Wyllie-Echeverria, D. MacLellan, and R. Shuman. 2001. Nearshore habitat mapping in Puget Sound using side scan sonar and underwater videography. Oral presentation at the Puget Sound Research 2001 Conference, Bellevue, WA.

Acknowledgements

We wish to thank the following people who assisted in making this project a success: Stephanie Buffum-Field (Friends of the San Juans); Jim Slocomb (San Juan County Marine Resource Committee); Sandy Wyllie-Echeveria (University of Washington); Brian Williams (Washington State Department of Fish and Wildlife); Brad Jensen and Lou Schwartz (Sound Vessels, Inc.); Amy Sewell, Helen Berry, Blain Reeves (Washington State Department of Natural Resources); Pema Kitaeff,, Cinamon Moffett, and Meredith Barrett (Marine Resources Consultants).

TABLE 5.

List of sites visited each sampling day.

	I	T
Dates	ID	Name
4/30	598	Lopez Island
4/30	599	Lopez Island
4/30	600	Lopez Island
4/30	610	Lopez Island, Spencer Spit north side
4/30	614	Lopez Island, Spencer Spit south side
4/30	615	Lopez Island
4/30	616	Lopez Island
5/1	127	San Juan Island, 4th of July Beach
5/1	589	Lopez Island
5/1	590	Lopez Island
5/1	591	Lopez Island
5/1	592	Lopez Island, Fishermans Bay
5/1	593	Lopez Island, Fishermans Bay
5/1	594	Lopez Island, Fishermans Bay
5/1	595	Lopez Island
5/1	596	Lopez Island
5/1	597	Lopez Island
5/2	84	Shaw Island, north side
5/2	85	Shaw Island, north side
5/2	86	Shaw Island, Neck Point
5/2	87	Shaw Island, Neck Point
5/2	88	Shaw Island, Tift Rocks
5/2	89	Shaw Island, west side
5/2	90	Shaw Island, Post Office Bay
5/2	91	Shaw Island, Parks Bay
5/2	92	Shaw Island, Parks Bay
5/2	93	Shaw Island, Point George
5/5	69	Shaw Island, Indian Cove
5/5	71	Shaw Island, west side
5/5	72	Shaw Island, west side
5/5	73	Shaw Island, Hankin Point
5/5	75	Shaw Island, Hudson Bay
5/5	79	Shaw Island, north side
5/6	357	Waldron Island, east side
5/6	358	Waldron Island, Mail Bay
5/6	448	Orcas Island
5/6	449	Orcas Island, West Beach
5/6	450	Orcas Island

Dates	ID	Name
5/6	451	Orcas Island, Freeman Island
5/6	452	Orcas Island
5/6	453	Orcas Island
5/6	454	Orcas Island, Point Doughty
5/6	455	Orcas Island
5/6	456	Orcas Island
5/6	457	Orcas Island, airport
5/7	348	Waldron Island, Cowlitz Bay
5/7	349	Waldron Island, Cowlitz Bay
5/7	350	Waldron Island, Sandy Point
5/7	352	Waldron Island, North Bay
5/7	353	Waldron Island, Fishery Point
5/7	354	Waldron Island, north side
5/7	355	Waldron Island, north side
5/7	356	Waldron Island, Hammond Point
5/8	103	Decatur Island, Reeds Bay
5/8	104	Decatur Island, west side
5/8	114	Decatur Island, Decatur Head
5/8	115	Decatur Island, White Cliff
5/8	116	Decatur Island, se side
5/8	117	Decatur Island, se side
5/8	370	Blakely Island
5/8	371	Blakely Island
5/8	372	Blakely Island
5/19	128	San Juan Island, Griffin Bay
5/19	129	San Juan Island, Griffin Bay
5/19	130	San Juan Island, Griffin Bay
5/19	131	San Juan Island, Low Point
5/19	132	San Juan Island, Mulno Cove
5/19	133	San Juan Island, Merrifield Cove
5/19	136	San Juan Island, North Bay
5/19	137	San Juan Island, Argyle Lagoon
5/20	169	San Juan Island, Pearl Island
5/20	170	San Juan Island, Pearl Island
5/20	171	San Juan Island, Pearl Island
5/20	172	San Juan Island, Roche Harbor
5/20	173	San Juan Island, Roche Harbor
5/20	174	San Juan Island, Bazalgette Point

Dates	ID	Name
5/20	175	San Juan Island, White Point
5/20	176	San Juan Island, White Point
5/20	179	San Juan Island, Delacombe Point
5/20	1308	Henry Island, north side
5/20	1309	Henry Island, north side
5/20	1311	Henry Island, Mosquito Pass
5/20	1312	Henry Island, Mosquito Pass
5/20	1313	Henry Island, Mosquito Pass
5/21	318	Stuart Island, Reid Harbor
5/21	341	Stuart Island, Reid Harbor
5/21	497	Johns Island
5/21	498	Johns Island
5/21	499	Johns Island
5/22	414	Orcas Island
5/22	428	Orcas Island
5/22	433	Orcas Island
5/22	434	Orcas Island
5/22	435	Orcas Island
5/23	122	San Juan Island, Cattle Point
5/23	123	San Juan Island, Goose Island
5/23	143	San Juan Island, Pear Pt. Peninsula
5/23	147	San Juan Island, Friday Harbor
5/23	583	Lopez Island
5/23	587	Lopez Island
5/23	588	Lopez Island
5/26	402	Orcas Island
5/26	403	Orcas Island
5/26	418	Orcas Island
5/26	419	Orcas Island
5/29	376	Orcas Island
5/29	379	Orcas Island, Buck Bay
5/30	389	Orcas Island
5/30	390	Orcas Island
5/30	391	Orcas Island, Ship Bay
5/30	392	Orcas Island, Madrona Point
6/2	486	Blakely Island
6/2	487	Blakely Island
6/2	488	Blakely Island
6/2	489	Blakely Island
6/2	490	Blakely Island
6/2	491	Blakely Island
6/2	492	Blakely Island
6/2	493	Blakely Island
6/2	601	Lopez Island
6/2	602	Lopez Island, Upright Head

Dates	ID	Name
6/2	685	Blakely Island, Pointer Island
6/3	344	Waldron Island, south side
6/3	345	Waldron Island, Point Disney
6/3	346	Waldron Island, Cowlitz Bay
6/3	347	Waldron Island, Cowlitz Bay
6/3	359	Waldron Island, south side
6/3	360	Waldron Island, south side
6/3	361	Waldron Island, south side
6/3	362	Waldron Island, south side
6/3	442	Orcas Island
6/3	443	Orcas Island
6/3	444	Orcas Island
6/3	445	Orcas Island
6/3	446	Orcas Island
6/3	447	Orcas Island
6/4	80	Shaw Island, north side
6/4	82	Shaw Island, north side
6/4	83	Shaw Island, north side
6/4	431	Orcas Island
6/4	432	Orcas Island
6/4	436	Orcas Island
6/4	437	Orcas Island, Steep Point
6/4	555	Wasp Islands, Crane Island
6/4	556	Wasp Islands, Crane Island
6/4	557	Wasp Islands, Crane Island
6/4	558	Wasp Islands, Crane Island
6/5	66	Shaw Island, se side
6/5	67	Shaw Island, se side
6/5	94	Shaw Island, Point George
6/5	95	Shaw Island, Hicks Bay
6/5	96	Shaw Island, Hicks Bay
6/5	97	Shaw Island, Hoffman Bay
6/5	151	San Juan Island, Point Caution
6/5	152	San Juan Island, Point Caution
6/5	153	San Juan Island, SJ Channel
6/5	154	San Juan Island, SJ Channel
6/5	155	San Juan Island, SJ Channel
6/5	367	Blakely Island
6/5	369	Blakely Island
6/6	112	Decatur Island, ne side
6/6	113	Decatur Island, Decatur Head
6/6 5/8 &	363	Blakely Island
6/6	364	Blakely Island, Armigage Island
6/6	366	Blakely Island

Dates	ID	Name
6/8	634	Lopez Island, Telegraph Bay
6/9	106	Decatur Island, Sylvan Cove
6/9	107	Decatur Island, north side
6/9	108	Decatur Island, north side
6/9	109	Decatur Island, north side
6/9	110	Decatur Island, north side
6/9	111	Decatur Island, Fauntleroy Point
6/9	695	Decatur Island, Trump Island
6/9	696	Decatur Island, Trump Island
6/10	121	San Juan Island, Cattle Point
6/10	203	San Juan Island, Eagle Cove
6/10	204	San Juan Island, west side
6/10	205	San Juan Island, west side
6/10	206	San Juan Island, South Beach
6/10	207	San Juan Island, South Beach
6/10	643	Lopez Island, Aleck Bay
6/10	644	Lopez Island, Aleck Bay
6/11	459	Orcas Island, Thompson Point
6/11	460	Orcas Island, Thompson Point
6/11	461	Orcas Island
6/11	462	Orcas Island
6/11	463	Orcas Island, Racoon Point
6/11	464	Orcas Island
6/11	465	Orcas Island
6/11	466	Orcas Island
6/11	467	Orcas Island
6/11	468	Orcas Island
6/11	469	Orcas Island
6/11	470	Orcas Island
6/11	471	Orcas Island
6/11	472	Orcas Island, Lawrence Point
6/11	473	Orcas Island
6/12	156	San Juan Island, SJ Channel
6/12	440	Orcas Island
6/17	157	San Juan Island, SJ Channel
6/17	158	San Juan Island, SJ Channel
6/17	159	San Juan Island, SJ Channel
6/17	160	San Juan Island, Rocky Bay
6/17	161	San Juan Island, Rocky Bay
6/17	162	San Juan Island, Rocky Bay
6/17	163	San Juan Island, SJ Channel
6/17	164	San Juan Island, Limestone Point
6/17	165	San Juan Island, north side
6/17	166	San Juan Island, north side
6/17	167	San Juan Island, Davison Head

Dates	ID	Name
6/17	168	San Juan Island, Davison Head
6/18	393	Orcas Island
6/18	394	Orcas Island
6/18	395	Orcas Island
6/18	396	Orcas Island
6/18	397	Orcas Island
6/18	398	Orcas Island
6/18	399	Orcas Island
6/18	400	Orcas Island
6/18	401	Orcas Island
6/18	404	Orcas Island, Twin Rocks SP
6/18	405	Orcas Island
6/18	406	Orcas Island
6/18	407	Orcas Island
6/19	74	Shaw Island, NW side
6/19	378	Orcas Island
6/19	380	Orcas Island, Olga
6/19	381	Orcas Island
6/19	382	Orcas Island
6/19	383	Orcas Island
6/19	384	Orcas Island
6/19	385	Orcas Island, Rosario Point
6/19	386	Orcas Island
6/19	387	Orcas Island
6/19	388	Orcas Island
6/23	319	Stuart Island, Reid Harbor
6/23	320	Stuart Island, Reid Harbor
6/23	321	Stuart Island
6/23	322	Stuart Island
6/23	323	Stuart Island
6/23	324	Stuart Island
6/23	325	Stuart Island
6/23	326	Stuart Island
6/23	327	Stuart Island, Turn Point
6/23	328	Stuart Island
6/23	329	Stuart Island
6/23	330	Stuart Island, Charles Point
6/23	342	Stuart Island, Reid Harbor
6/23	343	Stuart Island, Reid Harbor
6/24	180	San Juan Island, Hanbury Point
6/24	182	San Juan Island, Smugglers Cove
6/24	183	San Juan Island, west side
6/24	184	San Juan Island, Andrews Bay
6/24	185	San Juan Island, Smallpox Bay
6/24	186	San Juan Island, west side

Dates	ID	Name
6/24	1300	Henry Island, Open Bay
6/24	1301	Henry Island, Open Bay
6/24	1302	Henry Island, Kellett Bluff
6/24	1303	Henry Island, Kellett Bluff
6/24	1304	Henry Island, west side
6/24	1305	Henry Island, west side
6/24	1306	Henry Island, west side
6/24	1307	Henry Island, McCracken Point
6/25	438	Orcas Island
6/12 &		
6/25 6/4 &	439	Orcas Island
6/25	441	Orcas Island
6/25	501	Johns Island
6/25	502	Johns Island
6/25	510	Flattop Island
6/25	513	Speiden Island, Sentinal Island
6/25	514	Speiden Island, Sentinal Island
6/25	524	Speiden Island
6/25	525	Speiden Island
6/25	526	Speiden Island
6/25	527	Speiden Island
6/25	528	Speiden Island
6/25	529	Speiden Island
6/25	530	Speiden Island
6/25	531	Speiden Island
6/25	532	Speiden Island
6/25	533	Speiden Island
6/25	534	Speiden Island
6/26	474	Orcas Island
6/26	475	Orcas Island, Doe Bay
6/26	476	Orcas Island
6/26	477	Orcas Island, Doe Bay
6/26	478	Orcas Island, Doe Island
6/26	479	Orcas Island
6/26	481	Orcas Island
6/26	482	Orcas Island
6/26	483	Orcas Island
6/27	269	Patos Island
6/27	270	Patos Island
6/27	271	Patos Island
6/27	272	Patos Island
6/27	273	Patos Island
6/27	274	Patos Island
6/27	275	Patos Island
6/27	299	Matia Island

Dates	ID	Name
6/27	300	Matia Island
6/27	301	Matia Island
6/27	302	Matia Island
6/27	303	Matia Island
6/27	304	Matia Island
6/27	305	Shipjack Island
6/27	306	Shipjack Island
6/28	118	Decatur Island, se side
6/28	120	San Juan Island, South Beach
6/28	629	Lopez Island, Lopez Pass
6/28	630	Lopez Island, Lopez Pass
6/28	631	Lopez Island, Shoal Bight N
6/28	632	Lopez Island, Shoal Bight S
6/28	633	Lopez Island, Cape St.Mary
7/25	101	Decatur Island, Center Island
7/25	102	Decatur Island, Center Island
7/26	105	Decatur Island, Brigantine Bay
7/27	571	Lopez Island
7/27	638	Lopez Island, Point Colville
7/27	639	Lopez Island, Blind Island
7/27	640	Lopez Island, McArdle Bay
7/27	641	Lopez Island, Hughes Bay
7/27	642	Lopez Island, Hughes Bay
7/27	645	Lopez Island, Aleck Bay
7/27	646	Lopez Island
7/27	647	Lopez Island, Flint Beach
7/27	648	Lopez Island
7/28	572	Lopez Island, Iceberg Point
7/28	573	Lopez Island
7/28	574	Lopez Island
7/28	575	Lopez Island, Johns Point
7/28	576	Lopez Island
7/28	578	Lopez Island
7/28	579	Lopez Island
7/28	580	Lopez Island
7/31	618	Lopez Island
7/31	619	Lopez Island, Small Island
7/31	620	Lopez Island
7/31	621	Lopez Island
8/1	100	Decatur Island, Center Island
8/1 7/31 &	119	Decatur Island, south tip
8/1	627	Lopez Island, Skull Island
8/1	628	Lopez Island
8/3	149	San Juan Island, Port of FH

Dates	ID	Name
8/3	150	San Juan Island, FH labs
8/6	422	Orcas Island
8/6	423	Orcas Island
8/6	424	Orcas Island
8/6	425	Orcas Island
8/6	426	Orcas Island
8/6	427	Orcas Island
8/6	544	Wasp Islands, Reef Island
8/6	545	Wasp Islands, Reef Island
8/6	552	Wasp Islands, McConnell Island
8/6	553	Wasp Islands, McConnell Island
8/6	554	Wasp Islands, McConnell Island
8/7	144	San Juan Island, Turn Point
8/7	145	San Juan Island, Turn Point
8/7	146	San Juan Island, Friday Harbor
8/7	148	San Juan Island, Friday Harbor
8/7	543	Jones Island
8/7	560	Wasp Islands, Yellow Island
8/7	561	Wasp Islands, Yellow Island
8/7	562	Wasp Islands, Cliff Island
8/7	682	Brown Island
8/7	684	Brown Island
8/8	195	San Juan Island, west side
8/8	196	San Juan Island, Pile Point
8/8	197	San Juan Island, Kanaka Bay
8/8	199	San Juan Island, west side
8/8	200	San Juan Island, west side
8/8	201	San Juan Island, west side
8/8	202	San Juan Island, Eagle Point
8/11	134	San Juan Island, Griffin Bay
8/11	135	San Juan Island, Dinner Island
8/11	140	San Juan Island, Pear Point
8/11	141	San Juan Island, Danger Rock
8/11	142	San Juan Island, Reef Point
8/11	686	San Juan Island, Turn Island
8/11	687	San Juan Island, Turn Island
8/14 8/14	331	Stuart Island Stuart Island, Satellite Island
8/14	334	Stuart Island, Satellite Island Stuart Island, Satellite Island
8/15	337	Stuart Island Stuart Island
8/15	338	Stuart Island
8/15	339	Stuart Island
8/15	340	Stuart Island, Gossip Island
8/15	500	Johns Island
8/15	503	Johns Island
٥, . ٠		

Dates	ID	Name
8/15	504	Johns Island, Ripple Island
8/15	506	Cactus Islands
8/15	507	Cactus Islands
8/15	508	Cactus Islands
8/15	509	Cactus Islands
8/15	511	Flattop Island
8/17	191	San Juan Island, west side
8/17	192	San Juan Island, west side
8/17	193	San Juan Island, west side
8/17	194	San Juan Island, west side
8/19	124	San Juan Island, Cape San Juan
8/19	125	San Juan Island, Cape San Juan
8/19	126	San Juan Island, Fish Creek
8/19	187	San Juan Island, Bellevue Point
8/19	188	San Juan Island, west side
8/19	189	San Juan Island, Deadman Bay
8/19	190	San Juan Island, west side
8/19	1314	Henry Island, Mosquito Pass
8/20	98	Decatur Island, Rim islands
8/20	99	Decatur Island, Reeds Bay
8/20	581	Lopez Island
8/20	582	Lopez Island
8/20	584	Lopez Island
8/20	585	Lopez Island, Deadman Island
8/20	586	Lopez Island
8/20	697	Decatur Island, Ram Island
8/20	698	Decatur Island, Ram Island
8/20	735	Charles Island, north side
8/20	737	Charles Island, west side
8/20	738	Lopez Island, Long Island
8/20	739	Lopez Island, Long Island
8/20	740	Lopez Island, Long Island
8/21	373	Blakely Island, Peavine Pass
8/21	374	Blakely Island, Obstruction Island
8/21	375	Blakely Island, Obstruction Island
8/21	377	Orcas Island
8/21	408	Orcas Island
8/21	410	Orcas Island
8/21	484	Blakely Island, Obstruction Island
8/21	485	Blakely Island, Obstruction Island
8/22	307	Clark Island
8/22	308	Clark Island
8/22	309	Clark Island
8/22	310	Clark Island
8/22	312	Clark Island

Dates	ID	Name
8/22	313	Clark Island
8/22	314	Clark Island
8/22	315	Clark Island
8/22	316	Clark Island
8/22	317	Clark Island
8/22	416	Orcas Island, Oak Island
8/22	559	Wasp Islands, Crane Island
8/22	678	Lopez Island, Flower Island
8/22	679	Lopez Island, Flower Island
8/23	276	Sucia Island
8/23	277	Sucia Island
8/23	278	Sucia Island
8/23	280	Sucia Island
8/23	281	Sucia Island
8/23	282	Sucia Island
8/24	283	Sucia Island
8/24	284	Sucia Island
8/24	285	Sucia Island
8/24	286	Sucia Island
8/24	287	Sucia Island
8/24	288	Sucia Island
8/24	289	Sucia Island
8/24	290	Sucia Island
8/24	292	Sucia Island
8/24	293	Sucia Island
8/24	294	Sucia Island
8/24	295	Sucia Island
8/24	296	Sucia Island
8/24	297	Sucia Island
8/24	458	Orcas Island
9/22	613	Lopez Island, Frost Island
9/22	680	Blakely Island, Willow Island
9/22	691	James Island
9/22	692	James Island
9/22	693	James Island
9/23	415	Orcas Island
9/23	417	Orcas Island
9/23	420	Orcas Island, West Sound
9/23	421	Orcas Island
9/23	611	Lopez Island, Frost Island
9/23	612	Lopez Island, Frost Island
9/24	409	Orcas Island
9/24	411	Orcas Island
9/24	412	Orcas Island
9/24	413	Orcas Island

Dates	ID	Name
9/24	429	Orcas Island
9/24	430	Orcas Island
9/24	539	Jones Island
9/24	540	Jones Island
9/24	541	Jones Island
9/24	542	Jones Island
9/24	606	Lopez Island, Humphrey Head
9/24	650	Shaw Island, Canoe Island
9/25	138	San Juan Island, Pear Pt. Peninsula
9/25	139	San Juan Island, Pear Pt. Peninsula
9/25	635	Lopez Island, Watmough Bay
9/25	636	Lopez Island, Boulder Island