GRANT TITLE: Northwest Straits Project: Marine Resources Committee Administration and Action

# **Projects**

TASK NO: 4.2 Water Quality Monitoring

| ( ) ANNUAL REPORT                                   |
|-----------------------------------------------------|
| ( ) WORK PLAN                                       |
| ( ) PROGRESS REPORT No. 1 No. 2 No. 3               |
| ( ) FINAL PROGRESS REPORT                           |
| () PROJECT COMPLETION REPORT                        |
| () SUMMARY REPORT                                   |
| $(\overline{\underline{X}})$ TECHNICAL REPORT       |
| ( ) PROTOCOL                                        |
| QUALITY ASSURANCE/QUALITY CONTROL                   |
| PERIOD COVERED: <u>July 1, 2009 – June 30, 2010</u> |
| DATE SUBMITTED: June 18, 2010                       |



This report was funded in part through a cooperative agreement with the National Oceanic and Atmospheric Administration.

The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies.

# Water Quality Monitoring Project 5/24/06 through 5/26/10 Technical Report

Whatcom County Public Works- Natural Resources

June 18, 2010

For

Whatcom County Marine Resources Committee





This report was funded in part through a cooperative agreement with the National Oceanic and Atmospheric Administration.



The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of it sub-agencies.

#### Introduction

Recreational and commercially harvested shellfish, specifically clams and oysters, are an important resource in Whatcom County. Areas of harvest in Drayton Harbor, Chuckanut Bay, and Birch Bay are either closed or partially closed due to fecal coliform pollution, limiting the number of publicly accessible beaches for safe and healthy shellfish harvest. The east side of Lummi Island is a small but popular clamming destination that is currently unclassified by the Washington Department of Health due to limited fecal coliform data. The Whatcom County Marine Resources Committee (MRC) has highlighted recreational clamming opportunities as a priority issue, and works with Whatcom County Public Works – Natural Resources (Natural Resources) staff to monitor the water quality of coastal drainages into these important regions. These data are used to supplement Natural Resources water quality monitoring programs to establish priority areas for outreach, education, and programs aimed at restoring water quality.

In 2006, the MRC developed a water quality monitoring project to collect information at freshwater discharges to Drayton Harbor, Birch Bay and Chuckanut Bay. In 2009, the east side of Lummi Island was added as a location to sample, while Birch Bay monitoring was covered by Whatcom County through a different grant source. The goals of the water quality monitoring project are:

- to collect fecal coliform bacteria data and loading estimates at priority freshwater inputs around the southern shore of Drayton Harbor, eastern side of Lummi Island, and at Chuckanut Bay in order to augment data collected by other programs;
- to involve volunteers in the collection of water quality data;
- to complement and enhance water quality monitoring efforts by other agencies throughout the County, including the City of Bellingham, Whatcom County Public Works, Washington Department of Health, and the Nooksack Salmon Enhancement Association;
- to assist in community outreach efforts emphasizing the need for clean marine waters for safe shellfish harvesting; and
- to assist in the selection of future clam enhancement project locations.

This report describes the procedures used to collect water quality data and presents a review of data collected from May 2006 through May 2010.

# **Background**

In 2006, the MRC began a volunteer water quality monitoring project at Drayton Harbor, Birch Bay, and Chuckanut Bay. MRC members, Natural Resources staff, and volunteers were trained to collect grab samples of surface water for fecal coliform analysis and to estimate stream flow by the time of travel or catchment method. The eastern side of Lummi Island was added in late 2009 as a sampling location, and Birch Bay sampling continues through a different funding source. Sample collection and flow measurement occurs monthly during a low tide at up to five sites in Drayton Harbor, 18 in Birch Bay, four on Lummi Island, and four in Chuckanut Bay, depending on flow and tidal conditions. Fecal coliform bacteria results are compared to state water quality criteria to determine water quality status. Flow data can be used to estimate fecal coliform loads to the marine systems.

# **Samplers**

From July 2009 through May 2010, the following community volunteers assisted Natural Resources staff with sample collection:

- Terry Sullivan (Birch Bay Village)
- Lynn Trzynka (Chuckanut Bay)
- Wanda Cucinotta (Lummi Island)

In January 2009, Washington Conservation Corps (WCC) crewmembers stationed with the Nooksack Salmon Enhancement Association (NSEA) began sampling in Drayton Harbor and at most Birch Bay locations, while volunteers continue sampling at the other locations. This change in procedure was ideal to streamline procedures and reduce coordination time. Although Birch Bay sampling and analysis is currently funded through a different source, data obtained from Birch Bay is included in this report to keep consistent between different years of MRC-supported water quality monitoring.

Sample dates, number of volunteers per event, and estimated volunteer hours from July 2009 through May 2010 are presented in Table 1 below. While NSEA is reimbursed for the WCC crewmembers time to collect samples, those six people are serving through Americorps and are considered volunteers to the organization. Their volunteer status is not considered in the table below.

Table 1. Water Quality Volunteer Information – WCC crew includes up to 6 people.

| Sample Date            | Number of Volunteers | Estimated       |
|------------------------|----------------------|-----------------|
|                        |                      | Volunteer Hours |
| July 22, 2009          | 1 + WCC crew         | 2               |
| August 20, 2009        | 2 + WCC crew         | 4               |
| September 16, 2009     | 2 + WCC crew         | 4               |
| October 14, 2009       | 3 + WCC crew         | 6               |
| November 16, 2009      | 3 + WCC crew         | 6               |
| December 22, 2009      | 2 + WCC crew         | 4               |
| January 21, 2010       | 3 + WCC crew         | 6               |
| February 18, 2010      | 3 + WCC crew         | 8               |
| March 30, 2010         | 3 + WCC crew         | 6               |
| April 28, 2010         | 3 + WCC crew         | 6               |
| May 26, 2010           | 3 + WCC crew         | 6               |
| June 24, 2010          | 2 + WCC crew         | 4               |
| <b>Total Estimated</b> | June hours are an    | 62              |
| Hours:                 | estimate.            |                 |

#### Methods

Sample collection and flow measurement occur at freshwater tributaries and drainages to Drayton Harbor, Birch Bay, Lummi Island, and Chuckanut Bay. A description of the sample locations is provided in Table 2.

Procedures for sample collection and flow measurements are contained in the *Quality Assurance Project Plan Update-Whatcom County Volunteer Monitoring Program for Drayton Harbor, Birch Bay, and Chuckanut Bay Watersheds* (Hirsch Consulting Services, 2006). This document is available on the MRC website or in hard copy at the Natural Resources office. Care is taken to collect samples that represent flowing conditions; therefore, samples are not collected if water is stagnant or flowing upstream due to tidal influence. Water samples are collected directly into 100ml sterile plastic bottles by hand dipping the sample bottle 6 inches below the surface with the bottle opening facing upstream. Samples are stored on ice in a dark cooler and delivered to a state certified laboratory within 8 hours of sampling. Fecal coliform is measured using the standard membrane filtration technique.

At the majority of sites, stream flow is estimated using the time of travel method, which uses area and velocity to calculate flow. Area is determined by measuring stream segment length, width, and depth. Velocity is estimated by timing a floatable object between two points. At some sites, piped flow measurements are estimated using the catchment method (time it takes to collect a known volume of water) or, if possible, time of travel through the culvert.

**Table 2. Sample Point Descriptions** 

| Watershed | Site | Location                                                          | Description      | Water    | Flow     | Flow Method* |
|-----------|------|-------------------------------------------------------------------|------------------|----------|----------|--------------|
| Id        |      |                                                                   |                  | Quality  |          |              |
| Drayton   | DH2  | Harborview & Drayton Harbor Rd. (E)                               | Outfall          | <b>√</b> | <b>✓</b> | TT           |
|           | DH3  | Harborview &<br>Drayton Harbor Rd.<br>(W)                         | Outfall          | <b>√</b> | <b>√</b> | TT           |
| Harbor    | DH4  | Across from ~ 4985<br>Drayton Harbor Rd.                          | Outfall          | <b>√</b> | <b>√</b> | TT           |
|           | DH5  | Semiahmoo Trail                                                   | Creek            | <b>√</b> | <b>✓</b> | TT           |
|           | DH14 | Ditch running under<br>the driveway at 1565<br>Drayton Harbor Rd. | Ditch            | <b>√</b> | <b>√</b> | TT           |
|           | BB1  | Intersection of Woolrich & Morrison                               | Creek            | <b>√</b> | <b>√</b> | TT           |
|           | BB2  | Leisure Park                                                      | Creek            | <b>√</b> | <b>√</b> | TT           |
|           | BB3  | Golf Course                                                       | Culvert on Beach | <b>√</b> | <b>√</b> | TT           |
|           | BB4  | Mariner's Cove                                                    | Culvert on Beach | <b>√</b> | <b>√</b> | TT           |
| Pirch Pov | BB5  | 8045 Birch Bay Dr                                                 | Culvert on Beach | <b>√</b> | <b>√</b> | TT           |
| Birch Bay | BB6  | 8124 Birch Bay Dr                                                 | Culvert on Beach | <b>√</b> | <b>√</b> | TT           |
|           | BB7  | Beach Way & Birch<br>Bay Dr.                                      | Culvert on Beach | <b>√</b> | <b>√</b> | TT           |
|           | BB8  | Cedar St. & Birch<br>Bay Dr.                                      | Culvert on Beach | ✓        | <b>√</b> | TT           |
|           | BB11 | Deer Trail Rd. &<br>Birch Bay Dr.                                 | Ditch            | <b>√</b> | <b>√</b> | TT           |

| Watershed  | Site | <b>Location</b> Description |                 | Water        | Flow         | Flow Method* |  |
|------------|------|-----------------------------|-----------------|--------------|--------------|--------------|--|
|            | Id   |                             |                 | Quality      |              |              |  |
|            | BB12 | Shintaffer Rd. &            | Channel         | ✓            | $\checkmark$ | TT           |  |
| Birch Bay, |      | Birch Bay Dr.               |                 |              |              |              |  |
| cont.      | BB17 | Birch Bay State Park        | Terrell Creek   | ✓            | $\checkmark$ | TT           |  |
|            | BB22 | Birch Point Rd.             | Creek           | ✓            | $\checkmark$ | TT           |  |
|            | BB15 | Marina pond                 | Outflow         | ✓            |              |              |  |
|            | BB16 | Beaver pond                 | Outflow         | ✓            |              |              |  |
| Birch Bay  | BB18 | N of Selder Rd.             | Ditch           | ✓            |              |              |  |
| Village    | BB19 | Selder Rd.                  | Ditch           | ✓            |              |              |  |
|            | BB20 | Rogers Slough               | Creek           | ✓            |              |              |  |
|            | BB21 | Skeena Way                  | Ditch           | ✓            |              |              |  |
|            | CB1  | Woodstock Farm              | Outfall         | ✓            | <b>√</b>     | CM           |  |
|            | CB2  | Arroyo Park                 | Upper Chuckanut | ✓            | <b>√</b>     | TT           |  |
| Chuckanut  |      |                             | Creek           |              |              |              |  |
| Bay        | CB3  | 18 <sup>th</sup> St Alley   | Chuckanut Creek | ✓            | $\checkmark$ | TT           |  |
|            | CB4  | Chuckanut Bay               | Lower Chuckanut | ✓            | <b>√</b>     | TT           |  |
|            |      |                             | Creek           |              |              |              |  |
|            | LI1  | ~2183 Nugent Rd.            | Creek           | ✓            |              |              |  |
|            | LI2  | Pocket beach                | Saltwater       | <b>✓</b>     |              |              |  |
|            |      | immediately north           |                 |              |              |              |  |
| Lummi      |      | of Ferry Terminal           |                 |              |              |              |  |
| Island     | LI3  | Outfall draining            | Outflow         | $\checkmark$ |              |              |  |
| Island     |      | Ferry Terminal              |                 |              |              |              |  |
|            |      | parking lot                 |                 |              |              |              |  |
|            | LI4  | ~ 2038 Nugent Rd.           | Creek           | ✓            |              |              |  |
|            | LI5  | "Donna's Beach"             | Saltwater       | ✓            |              |              |  |

<sup>\*</sup>TT = Time of travel CM = Catchment

# Water Quality Criteria

The Washington State Department of Ecology has classified freshwater tributaries discharging to Drayton Harbor and Chuckanut Bay as primary contact recreation areas and those discharging to Birch Bay as an extraordinary primary contact recreation area (WAC 173-201A).

The Water Contact Recreation Bacteria Criteria in Fresh Water (WAC 173-201A-200 (2)(b)) are:

- Extraordinary Primary Contact Recreation Fecal coliform organism levels must not exceed a geometric mean value of 50 colonies/100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained for calculating the geometric mean value exceeding 100 colonies/100 mL.
- *Primary Contact Recreation* Fecal coliform organism levels must not exceed a geometric mean value of 100 colonies /100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained for calculating the geometric mean value exceeding 200 colonies /100 mL.

The Washington State Department of Ecology has classified marine waters of Lummi Island as primary contact recreation areas (WAC 173-201A).

The Water Contact Recreation Bacteria Criteria in Marine Water (WAC 173-201A-210 (3)(a)) are:

• Fecal coliform organism levels must not exceed a geometric mean value of 14 colonies/100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained for calculating the geometric mean value exceeding 43 colonies/100 mL.

#### Results

A review of the water quality results is provided in this section. A comparison of the water quality data to the Water Contact Recreation Bacteria Criteria in Freshwater and Marine Water is presented in Table 3.

- A status highlighted in green as "meets standards" indicates that the site has met the geometric mean standard and less than 10% of the samples exceed 100 cfu/100ml (Birch Bay), 43 cfu/100ml (Lummi Island salt water) or 200 cfu/100ml (Drayton Harbor, Lummi Island freshwater, and Chuckanut Bay) for the recreation bacteria freshwater criteria.
- A yellow "partially meets standards" indicates that the geometric mean is below the criterion, but more than 10% of the samples exceed either 100 cfu/100ml (Birch Bay), 43 cfu/100ml (Lummi Island salt water) or 200 cfu/100 ml (Drayton Harbor, Lummi Island freshwater, and Chuckanut Bay).
- A status highlighted in orange as "does not meet standards" indicates that the sample meets neither the geometric mean nor the 10% exceeding standard. However, the geometric mean is between 50 and 100 cfu/100 ml for Birch Bay, and is between 100 and 200 cfu/100 ml for Drayton Harbor, Lummi Island freshwater, and Chuckanut Bay. These sites are considered a high priority for follow-up and outreach.
- A red "does not meet standards" indicates the site is above the geometric mean standard, and greater than 10% of the samples exceed either 100 cfu/100ml (Birch Bay) or 200 cfu/100 ml (Drayton Harbor, Lummi Island freshwater, and Chuckanut Bay). The geometric mean for these sites is greater than 100 cfu/100 ml for Birch Bay and greater than 200 cfu/100 ml for Drayton Harbor, Lummi Island freshwater and Chuckanut Creek. These sites are considered the highest priority for follow-up and outreach actions.

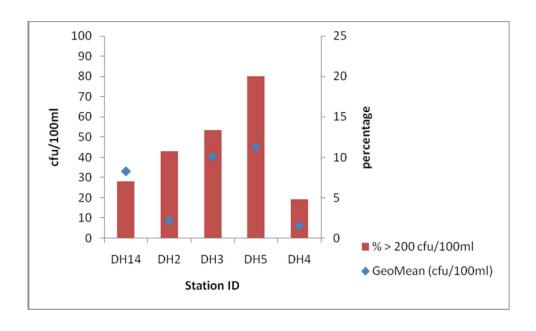
It should be noted that the Lummi Island sample size is low due to its recent introduction as a sampling location.

Table 3. Comparison of Water Quality Data to Bacteria Criteria

# **Birch Bay**

| Site | Number of<br>samples | GeoMean<br>(cfu/100mL) | 90th Pct<br>(cfu/100mL) | % > 100 cfu/100 mL | Status as of 5/26/10     |  |
|------|----------------------|------------------------|-------------------------|--------------------|--------------------------|--|
| BB17 | 42                   | 61                     | 289                     | 36                 | Does not meet standard   |  |
| BB1  | 27                   | 143                    | 990                     | 63                 | Does not meet standard   |  |
| BB2  | 41                   | 62                     | 670                     | 39                 | Does not meet standard   |  |
| BB3  | 31                   | 38                     | 150                     | 26                 | Partially meets standard |  |
| BB4  | 40                   | 96                     | 765                     | 45                 | Does not meet standard   |  |
| BB5  | 36                   | 58                     | 2195                    | 36                 | Does not meet standard   |  |
| BB6  | 38                   | 104                    | 1979                    | 32                 | Does not meet standard   |  |
| BB7  | 27                   | 146                    | 3460                    | 52                 | Does not meet standard   |  |
| BB8  | 32                   | 539                    | 4230                    | 88                 | Does not meet standard   |  |
| BB11 | 25                   | 109                    | 564                     | 56                 | Does not meet standard   |  |
| BB12 | 15                   | 42                     | 572                     | 33                 | Does not meet standard   |  |
| BB15 | 28                   | 21                     | 282                     | 18                 | Partially meets standard |  |
| BB16 | 30                   | 52                     | 237                     | 33                 | Partially meets standard |  |
| BB18 | 25                   | 92                     | 3020                    | 44                 | Does not meet standard   |  |
| BB19 | 21                   | 11                     | 92                      | 10                 | Partially meets standard |  |
| BB20 | 27                   | 41                     | 552                     | 30                 | Partially meets standard |  |
| BB21 | 22                   | 78                     | 3076                    | 41                 | Does not meet standard   |  |
| BB22 | 26                   | 58                     | 287                     | 23                 | Does not meet standard   |  |
|      |                      |                        | Drayto                  | n Harbor           |                          |  |
| Site | Number of samples    | GeoMean<br>(cfu/100mL) | 90th Pct<br>(cfu/100mL) | % > 200 cfu/100 mL | Status as of 5/26/10     |  |
| DH14 | 14                   | 33                     | 131                     | 7                  | Meets standard           |  |
| DH2  | 28                   | 9                      | 205                     | 11                 | Partially meets standard |  |
| DH3  | 30                   | 41                     | 259                     | 13                 | Partially meets standard |  |
| DH5  | 30                   | 45                     | 236                     | 20                 | Partially meets standard |  |
| DH4  | 21                   | 6                      | 64                      | 5                  | Meets standard           |  |
|      |                      |                        |                         | ni Island          |                          |  |
| Site | Number of samples    | GeoMean<br>(cfu/100mL) | 90th Pct<br>(cfu/100mL) | % > 200 cfu/100 mL | Status                   |  |
| LI1  | 5                    | 53                     | 426                     | 40                 | Partially meets standard |  |
| LI2* | 7                    | 9                      | 52                      | 0                  | Partially meets standard |  |
| LI3  | 3                    | 4                      | 35                      | 0                  | Meets standard           |  |
| LI4  | 6                    | 67                     | 222                     | 17                 | Partially meets standard |  |
| LI5* | 8                    | 3                      | 25                      | 0                  | Meets standard           |  |
| LI7  | 2                    | 37                     | 621                     | 50                 | Partially meets standard |  |
|      | <del></del>          | <del></del>            |                         | anut Bay           | ,                        |  |
| Site | Number of samples    | GeoMean<br>(cfu/100mL) | 90th Pct<br>(cfu/100mL) | % > 200 cfu/100 mL | Status                   |  |
| CB1  | 35                   | 30                     | 438                     | 20                 | Partially meets standard |  |
| CB2  | 42                   | 27                     | 164                     | 5                  | Meets standard           |  |
| CB3  | 42                   | 47                     | 346                     | 24                 | Partially meets standard |  |
|      |                      | 43                     | 214                     |                    | Partially meets standard |  |

CB4 37 43 214

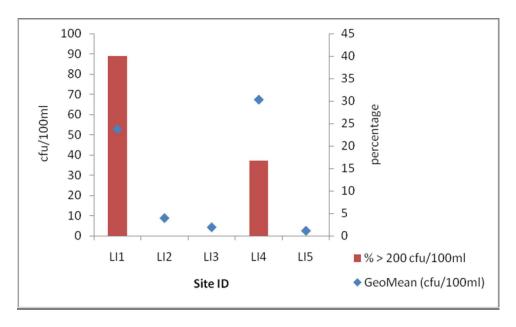

\* indicates a saltwater sampling site with marine water criteria

# **Drayton Harbor**

As of May 2010, 28 samples have been collected at DH2, 30 samples have been collected at DH3 and DH5, 21 samples have been collected at DH4, and 14 samples have been collected at DH4. All five sites meet the geometric mean criterion of less than 100 cfu/100ml. Three sites, DH2, DH3 and DH 5 do not meet the criterion requiring less than 10% of the samples to exceed 200 cfu/100ml, as seen in Figure 1. The DH2 site has seen a decrease in water quality since the last report, with its 90<sup>th</sup> percentile increasing to 205 cfu/100ml. A comparison of water quality data at Drayton Harbor to the bacteria criteria is presented in Figure 1.

Figure 1. Comparison of Drayton Harbor Data to Bacteria Criteria

Blue diamonds represent the geometric mean (cfu/100ml) at each site. Red bars represent the percent of samples exceeding 200 cfu/100ml.

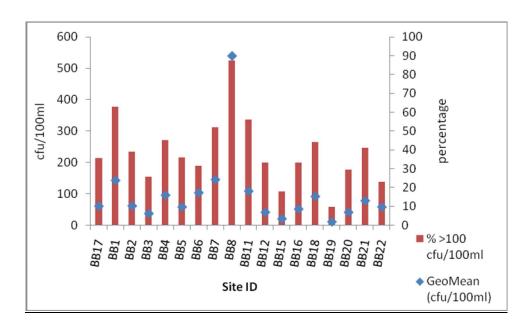



# Lummi Island

As of May 2010, five samples have been collected at LI1, seven collected at LI2, three collected at LI3, six at LI4, and eight have been collected at LI5. The two saltwater sites, LI2 and LI5 both meet the geometric mean criterion of less than 14 cfu/100ml, although LI2 exceeds the criterion requiring sites to have less than 10% above 43 cfu/100ml. The freshwater sites all meet the geometric mean criterion of less than 100 cfu/100ml. Two sites, LI1 and LI4 do not meet the criterion requiring less than 10% of the samples to exceed 200 cfu/100ml, as seen in Figure 2. As sampling continues at this location we will begin to get a better picture for how these sites compare to water quality criteria. A comparison of water quality data at Lummi Island to the bacteria criteria is presented in Figure 2.

Figure 2. Comparison of Lummi Island Data to Bacteria Criteria

Blue diamonds represent the geometric mean (cfu/100ml) at each site. Red bars represent the percent of samples exceeding 200 cfu/100ml.

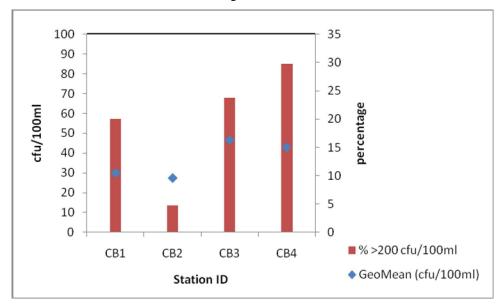



# Birch Bay

Of the 18 freshwater sites sampled in Birch Bay, 13 meet neither the geometric mean nor the percentage exceeding 100 cfu/100ml criteria. Five sites meet the geometric mean criterion, but greater than 10% of the samples are higher than 100 cfu/100ml. This indicates that all of the sites have greater than 10% of the samples with greater than 100 cfu/100ml. A comparison of water quality data at Birch Bay to the bacteria criteria is presented in Figure 3.

Figure 3. Comparison of Birch Bay Data to Bacteria Criteria

Blue diamonds represent geometric mean (cfu/100ml) at each site. Red bars represent percent of samples exceeding 100 cfu/100ml.




# Chuckanut Bay

As of May 2010, 35 samples have been collected at CB1, 42 at CB2 and CB3, and 37 at CB 4. All four sites meet the geometric mean criterion of less than 100 cfu/100ml. CB2 meets both criteria, while CB1, CB3, and CB4 all exceed the percentage criterion. A comparison of water quality data at Chuckanut Bay to the bacteria criteria is presented in Figure 3.

Figure 2. Comparison of Chuckanut Bay Data to Bacteria Criteria

Blue diamonds represent geometric mean (cfu/100ml) at each site. Red bars represent percent of samples exceeding 200 cfu/100ml.



#### **Discussion**

These data suggest that fecal coliform remains an important pollutant of concern in freshwater tributaries and discharges to Drayton Harbor, Birch Bay, Lummi Island and Chuckanut Bay. Birch Bay continues to be of particular concern; both due to its importance as a recreational harvest and swimming area, and as the stations there all exceed at least one of the criteria for water quality. Lummi Island data is limited, but with continued sampling we will be able to draw greater conclusions about what pollution influences the surrounding land uses may have on recreational harvest areas. The Drayton Harbor drainage sites focused on in this report continue to improve in water quality, despite occasional high fecal coliform counts. Two of the sites are well within both standards, and one site is 5 cfu/100 ml away from meeting both standards. The remaining two sites should be focused on for follow-up outreach and education. The Chuckanut drainages sites have seen a decrease in water quality since last year, although all sites still fall well within the geometric mean criterion. The 90<sup>th</sup> percentile of the sites has increased, indicating occasional spikes are still persistent in the watershed. A community volunteer has recently begun monitoring more frequently and at more locations in the Bay to attempt to distinguish from where sources of bacterial pollution may be coming.

The MRC water quality monitoring project is scheduled for funding through June 2011. The MRC is working with Whatcom County to develop outreach and response strategies to identify and control fecal coliform sources. Coordinated efforts between Whatcom County Natural Resources, Nooksack Salmon Enhancement Association, Whatcom County Beach Watchers, Birch Bay Watershed and Aquatic Resource Management, and others, will help ensure that sampling continues to occur in an efficient and adequate manner.